Paper to be presented at: DRUID17
NYU Stern School of Business, New York, June 12-14, 2017

Adoption and re-adaptation of practices: The paradox of abandonment

Isabel M. Bodas-freitas
Grenoble Ecole de Management
Technology Management
Isabel-Maria.BODAS-FREITAS@grenoble-em.com

Rosane Argou Marques
University of Brasilia, CEPPAC
CEPPAC
ramarques.ram@gmail.com

Gazi Islam
Grenoble École de Management
People, Organizations, and Society
Gazi.ISLAM@grenoble-em.com

Abstract
While the literature provides extensive evidence on the motivations for the adoption of new organizational practices, less attention has been paid to the process of abandonment of new practices after implementation and use. Understanding the constituents and processes by which new management practices are abandoned within firms is crucial to understanding how firms’ management practices evolve and recycle, as well as how firms re-integrate new best-management practices. The current paper examines the motivations and re-adaptation process underlying the abandonment of new management practices. Empirically, it uses the case of adoption and abandonment of crowdsourcing practices in a large automobile manufacturer in Brazil. Contrary to the conventional wisdom, abandonment was not motivated by unsuccessful implementation; instead, it inspired the re-adaptation of other practices and processes. In addition, abandonment in the use of crowdsourcing was not identical nor at similar speeds at different levels of analysis: firm, process and routine.

Jelcodes:O31,-
Adoption and re-adaptation of practices: The paradox of abandonment

Abstract
While the literature provides extensive evidence on the motivations for the adoption of new organizational practices, less attention has been paid to the process of abandonment of new practices after implementation and use. Understanding the constituents and processes by which new management practices are abandoned within firms is crucial to understanding how firms’ management practices evolve and recycle, as well as how firms re-integrate new best-management practices. The current paper examines the motivations and re-adaptation process underlying the abandonment of new management practices. Empirically, it uses the case of adoption and abandonment of crowdsourcing practices in a large automobile manufacturer in Brazil. Contrary to the conventional wisdom, abandonment was not motivated by unsuccessful implementation; instead, it inspired the re-adaptation of other practices and processes. In addition, abandonment in the use of crowdsourcing was not identical nor at similar speeds at different levels of analysis: firm, process and routine.

Keywords: innovation management practice; abandonment; adoption

Acknowledgements:
The authors are grateful to the interviewees, at FCA Betim (Brazil), for their time in participating of our research.
1. Introduction

Adopting new management practices permits firms to respond more promptly to new technological and market challenges and opportunities; consequently, much scholarship has examined process adoption by firms (e.g. Beck and Walgenbach, 2005; Peeters, Massini and Lewin, 2014; Volberda, van den Bosch and Mihelache, 2014). According to these studies, the adoption of management practices may reflect the need for firms to improve performance, to achieve certain ‘expected’ outcomes, to sustain competition, to respond to public discourse, to legitimize managerial choices and/or to avoid penalization in the market and social environment (Beck and Walgenbach, 2005; Davies, 1979; Kennedy and Fiss, 2009; Tolbert and Zucker, 1983). Given the often rapid turnaround of organizational practices, such literature has focused on explaining the adoption process; less attention has been paid, however, to the process of abandoning new practices once they have been implemented and used (cf. Oliver, 1992; Younkin, 2016). What happens when a firm abandons an innovative practice? Which are the consequences of the abandon in the use of an innovative practice? Is abandoning a innovative practice accompanied by a parallel abandoning of the organizational changes undertaken to adopt the practice or do such changes persist after the abandonment? Do firms develop new organizational routines or strategies as a result of abandoned practices?

But as new practices emerge, and firms adopt them successively, do firms become progressively similar to other adopters or not? If firms’ abandonment of an innovative organizational practice leaves little trace of the early adoption on the organization, then firms may indeed converge with firms that use the same fashions they do. If instead abandonment leaves great changes in the organization and processes but also on the firms’ routines, then firms’ may become melting pots of different organizational changes caused by different efforts to react to changing environment conditions. In addition, the degree of independence of the organizational/management fashions that succeed each other may depend to a large extent to the degree to which firms can use organizational/managerial fashions as temporary signs without consequences to their innovative capacity and organization. Understanding firms’ use of management practices from adoption to their abandonment, as well as how firms re-integrate new best-management practices as they emerge is a crucial element in understanding how firms’ management and organizations
evolve and recycle. It is also crucial for managers, who despite the rigidities of internal organizational and social structures need to promptly respond to specific external market and technological challenges, to internal conflicts, and to new market goals.

The few studies that have examined innovation abandonment have mostly focused on technological innovations and have conceptualized abandonment as stand-alone events influenced by the same economic and social factors that explain adoption decision (Burns and Wholey, 1993; Greenwood, Agarwal, Agarwal, and Gopal, 2017; Neil and Lee, 2001). Some recent research, however, has noted the processual nature of abandonment, based on an evolving set of institutional and performance concerns (Younkin, 2016). Regarding adoption, prior research already recognizes the processes of adaptation of innovative practices to firms’ organizational characteristics, conceptualizing adoption processually in terms of intra-firm diffusion across firms diverse activities (Battisti and Stoneman, 2003) and re-adaptation and reconfiguration (Ansari, Fiss and Zajac, 2010). Yet this level of theorization is currently lacking from abandonment approaches. We do know that abandonment decisions reflect social contagion and adoption intensity and extent (Gabba and Dokko, 2016). Further, recent research explores the processes by which abandonment decisions come about (Younkin, 2016). Yet, abandonment brings with it myriad organizational changes, and abandoned practices may leave traces or vestiges that are not well understood. While contributing to understanding abandonment decisions by showing how they relate to firm implementation experiences, treating abandonment as a final “stand-alone” event ignores processes of organizational change unfolding post-abandonment.

In this paper, we contribute to understanding innovation process abandonment by examining how abandonment decisions at the firm level reverberate through the organization at the level of intra-firm processes. Specifically, we examine the motivations and re-adaptation process accompanying the abandonment of new management practices. Empirically, we engage in an in-depth case study of adoption and abandonment of crowdsourcing practices in a large automobile manufacturer in Brazil. The data collection involved open interviews with Fiat Brazil’s manager, employee at the Department of Innovation, engineers involved in the crowdsourcing project as well as access to Fiat’s reports and website, including the FIAT MIO website, review of bibliography about crowdsourcing and innovation at Fiat and Fiat MIO.
Based on our data analysis, we argue that the abandonment of practices takes on different forms at different levels of analysis. At the firm/project level, abandonment entails the effective disappearance of practices, as top-down directives trigger rapid-responses to decisions to adopt or abandon. At the process level, however, abandonment can leave important traces of the previous practices, involving a plurality of latent/dormant processes that can be invoked later. At the level of routines, which depend on organizational culture and deeply ingrained procedural knowledge about interaction and craft, abandonment is least effective, and changes give rise to adaptations and improvisations that reproduce existing routines. Thus, abandoning practices does not automatically lead to a loss of the associated routines and informal structures, which can leave a legacy and provide a source of decoupling.

2. An organizational learning perspective on adoption and abandonment

Existing adoption literature showed firms’ adoption decisions to be motivated by the functional characteristics of the technology or practice to fit the market, technological and organizational needs of the firm as well as by the need to avoid social penalizations (Abrahamson and Fairchild, 1999; Davis, 1979; Kennedy and Fiss, 2009). By contrast, relatively little attention has been paid to the process of abandonment, a gap increasingly noted in emergent literature (e.g. Younkin, 2016).

Abandonment literature has followed two main research lines. One research line focuses on the emergence and replacement of practices at macro level. For example, Abrahamson and Fairchild (1999) show that management fashions have a long latency phase but a very short popularity, “a sharp decline in one fashion led to the increase in the next fashion” (page 723), and that the emergence of a fashion is associated with the intense public discourse bringing attention to a widespread performance gap of a country or an industry. The other research line examined abandonment as a stand-alone event, involving a similar decision-making process as adoption, influenced by economic costs and exposed to social contagion (Greenwood, Agarwal, Agarwal, and Gopal, 2017; Neil and Lee, 2001). Acknowledging the importance of the firms’ implementation choices on the abandonment
decision, Gabba and Dokko (2016) show that abandonment reflects both the effects of social contagion as well as the intensity and extension of adoption in terms of staffing and utilization levels. At the same time, Younkin (2016) recently demonstrated that abandonment, far from a simple decision to disconnect, is processual and temporally drawn out as a progressive deinstitutionalization of a practice. This processual view opens up a new field of study in examining how and at what organizational levels the abandonment process unfolds.

Adopting new organizational practices or technologies, given their inherent informational limitations and implementation complexities, involves a process of decoding, reinvention and recodification (Cowan and Foray, 1997; Cowan, David and Foray, 2000; Cohendet and Steinmueller, 2000; Winter and Szulanski, 2001; Szulanski and Jensen, 2006). To adopt a new practice, firms need to decode the meaning of the new organizational practice, to find a use of that practice that enhances the existing processes, and then implement a plan of reorganization of the existing processes to accommodate the new practice (Cowan and Foray, 1997; Cowan, David and Foray, 2000; Cohendet and Steinmueller, 2000). Depending on how well the practices fit the firm’s technical, cultural and organizational characteristics and its institutional environment, they are more or less intensively re-adapted (Ansari, Fiss and Zajac, 2010) and used across all or part of the firm’s activities (Battisti and Stoneman, 2003). Therefore, adoption of a new practice involves a process of organizational change, in which the practice is re-adapted and reconfigured but also a internal processes of information and knowledge flows are restructured, and in this process firms develop routines and build competences in performing specific processes using that practice (Bénézech et al., 2001).

By fostering dialogue between the explicit and tacit knowledge, between internal knowledge and the practice to be adopted, adoption of a new practice can accelerate organizational learning and the strategic renewal of an enterprise (Crossan, Lane and White, 1999; Nonaka, 1994). Four sequential processes were identified in the process of organizational learning, i.e. for organizations to develop new knowledge: Knowledge acquisition, knowledge dissemination, shared interpretation and Organizational memory (Huber, 1991), which may also be observed during the process of adoption of new practices (Benezech et al., 2001). To the extent that these learning processes are less linked to top-
down strategic decisions than they are to routine and tacit learning processes, their persistence is likely to continue in the face of top-down policy changes.

Through the experience of implementing and using of the practice firms acquire new knowledge on the attributes and the most relevant adaptations to be done on the practice, on other potential applications of the practice, but also on the organizational structure and its processes bottlenecks. This information and knowledge on how to use the practice and its benefits and the potentialities for improvement related processes by borrowing the practice are shared and interpreted within the organization (Nonaka, 1994; Walsh and Ungson, 1991). This new knowledge and information can be stored into databases, which may be retrieved later especially if before being loaded in the database it is first approved by domain experts and senior managers (Prado and Sapsed, 2016). It can also be stored into new operational routines through the reformulation of existing processes (Zollo and Winter, 2002), new products or into cause maps or even or new organizational goals that foster and back up future organizational and strategic re-adaptation (Walsh and Ungson, 1991; Greve, 1995).

Thus, in decoding, reinventing and re-codifying the new practice, new knowledge is created and interpreted that reinforce routines, processes and strategies, and build new competences (Benezech et al. 2001; Winter and Szulanski, 2001; Szulanski and Jensen, 2006). In this process, individuals are the major players in generation, dissemination and use of new knowledge (Nonaka and Takeuchi, 1995; Spender, 1996). Still, organizational learning and renewal is multi-level, i.e. it requires learning to occur at individual, group and organizational levels (Crossan et al., 1999). Organizations are complex and specific routines and business activities are often associated with established groups and individuals (Crossan et al., 1999). Renewal then requires that new insights, patterns and possibilities perceived by individuals lead to change into individual and group cognitive maps, which need to inspire group consensual plans for action, and lead to organizational change of routines. Thus, organizational learning involves reformulating routines as sequences of stable “repetitive, recognizable and interdependent actions” (Feldman and Pentland, 2003: 95) and capability development (Spender, 1996; Pisano, 1994).

Routines and capabilities exist with reference to the historical and contextual factors of the processes and interactions in which they were developed (Felin, Foss, Heimeriks and
Madsen, 2012). Hence, when practices are adopted in a specific project or process, they involve the development of new routines. The internal diffusion of the practice and associated routines to other processes and projects requires efforts to re-adapt the practice, and the knowledge created in using it within new contexts, i.e. new processes and new interactions. In the context of diffusion of practices and technologies across projects within an organization, Prado and Spased (2016) show that it is crucial that employees and managers are motivated to learn from others’ experience with the desire to recreate and re-adapt them in new contexts, and in this way develop new forms.

Just as adopting new practices involves or may require a process of organizational change and renewal, abandonment may similarly result from learning, entailing a process of organizational change. When abandoning a practice, either due to success or failure of the practice (Greve, 1995; Prado and Spased, 2016), firms face a very different situation than they did in the moment of adoption. New routines have been developed to support the use of the practice in the specific context of its adoption. Employees have developed procedural-memory around the practice, internal information and knowledge, and a repertoire of potential applications has been created. Especially in the case of successful practices, the desire to readapt it to new processes and projects may be stronger (Prado and Spased, 2016). The practice may find new applications in other processes, or it may be recreated in different contexts and processes leading to new emergence of new forms of routines.

Hence, we expect that the routines and capabilities developed by using the practice may persist beyond abandonment decision and they may even be relocated to other processes. Therefore, abandonment decision at firm level may not be accompanied by abandonment at the level of routines processes.

3. Research Methods

3.1. Background history of Fiat’s innovation in Brazil before MIO

Fiat Automobiles, an Italian company from Torino, started production of automobiles in Brazil at the city of Betim, state of Minas Gerais, in 1976. The first car manufactured was Fiat 147, powered by alcohol (ethanol). In 1975, the Brazilian government launched the National Program for Alcohol (Proalcohol), aimed at regulating the use of alcohol anhydrous mixed at gasoline (Vieira, 2007). In fact, the Proalcohol gave incentives to the development
of research, production and distribution of alcohol anhydrous as substitute for gasoline. The petroleum crises in 1973 motivated the Brazilian government to develop this Program in order to increase the use of alternative energy, as the prices of petroleum raised worldwide (Vieira, 2007). Proalcohol and the national government incentives to import substitution, as well as the local potential market, were incentives for Fiat to start operations in Brazil with a car powered by ethanol. According to the interviews, ethanol/alcohol powered engine was an important innovation for Fiat at that time.

According to Arruda, Salum and Rennó (2012b), Fiat Brazil strengthened the adaptation of car models to the Brazilian market, as new models, during the 1990s, when the Brazilian government ceased the import substitution policies and deregulated the internal market. Competition increased and most part of Brazilian automobile manufacturers started investments in new plants. Fiat followed the fashion and invested in new facilities in Betim. “When the Brazilian economy opened up in the 1990s, the need arose for car manufacturers operating in Brazil to improve and renew their products constantly so they could raise their productivity and increase their competitive advantages vis-à-vis international standards.” (Arruda et al., p.1, 2012b).

The evolution of innovative activities at Fiat Brazil seems to be connected with the global market strategies of Fiat Italy. Before the 1990s, the main product development efforts were internal as there were few collaboration with other partners besides few suppliers and Fiat Turin. The new car models were adaptations to the Brazilian environmental conditions (“tropicalization”) from the Italians, or for example the creation of derivatives (pickup, wagon and sedan) for the Fiat Uno (1984) and Fiat Uno Mille (1990), which was the first 1.000 cc engine car in the Brazilian market (Carvalho, 2005; Quadros and Consoni, 2009). In the 1980s1980s, Fiat Brazil’s product innovation strategy was decentralized from the headquarters following a "global thinking but a local doing" (Quadros and Consoni, 2009, p. 65). Although Fiat Brazil had some degree of autonomy, Brazilian engineers worked with the Italian product development team to adapt their technologies.

More efforts on collaboration in innovation activities at Fiat Brazil began in the 1990s, when Fiat Italy launched the 178 Project. The 178 aimed at developing a global car, such as the model Palio. The development involved engineers from several subsidiaries, including from the Brazilian Fiat. Approximately 200 engineers from Brazil collaborated in
the development of Palio. This involvement was considered as an important step for increasing innovation at Fiat Brazil. By that time, the engineering department was organized as an important collaborator for Italy (Arruda et al., 2012b). The Fiat Palio is an economy car, launched in 1996 in the emergent markets from Latin America, South Africa, East Europe and some Asian countries.

The Brazilian engineering department evolved to become the Giovanni Agnelli Development Center, founded in 2003, "the most complete Fiat development center outside Italy" (Fiat Press, 2008). This development centre consolidated all steps for product developments: conception, prototyping and testing to validate technical solutions. Simulations and dynamic tests at full scale are undertaken by a team of approximately 800 engineers and technicians. (Arruda et al., 2012b). The Center is organized in different units, such as (Fiat Press, 2008; Arruda et al., 2012a): (i) Sytle Centre; (ii) Project Engineering Departments; (iii) Experimental engineering department; (iv) Planning engineering and costs; and (v) Certification and Homologation. This infrastructure and team of engineers, designers and technicians are the basis for any novelty in Fiat’s products.

Nowadays, Fiat’s executives consider innovation as central at the company’s strategy for increasing market share worldwide and face economic downturns. Particularly in Brazil, there is a fierce competition between Fiat and its main competitors, which are the American, European and Japanese automakers, such as General Motors, Ford, Volkswagen, Peugeot, Renault and Toyota, among others, and the new Chinese automakers, which entered the country more recently. According to Sebrae (2015), in 2014, Brazil was the 8th world largest manufacturer of automobiles. It was behind China, USA, Japan, Germany, South Korea, India and Mexico. The total production capacity was 4.4 million automobiles, and total revenues amounted US$110.9 billions (Sebrae, 2015). In 2015, as the total revenues decreased by 20.68% Innovation became a priority at Fiat for coping with competitors and trying to maintain and increase market share.

3.2 Research method

The empirical context for the current study involves the development of a new project for a car model involving crowdsourcing at Brazil’s Fiat subsidiary. This setting was
chosen because of its experimentation with crowdsourcing, as an innovative form of public involvement in product development in Brazil. Because, within the context of a newly industrialized country, car makers had little experience with crowdsourcing, our overarching goal was to study the processes by which the initiative was managed, and understand its organizational implications.

Our data consisted of open interviews within the R&D department and the Department of Innovation of Fiat Betim, including the managers of both departments and employees. In order to gain access to the data for the current study, we presented out project to the Brazilian agency for industrial development, ABDI. ABDI indicated a contact at Fiat Betim’s R&D department. After a written correspondence, we were given clearance by the director to apply our interview protocol. Interviews were open-ended, and semi-structure, and focused around the motivations for using crowdsourcing for developing MIO, the re-organization of the processes and routines for using crowdsourcing, as well as the re-organization and re-structuring that occur in parallel with crowdsourcing and with its abandonment. Interviews were transcribed for further coding.

In addition to interviews, we also gained access to internal documents. The people we interviewed gave us access to internal documents, reports and manuals about the evolution of innovation management practices and the crowdsourcing project, such as the process of creation the innovation management department, the role of the directory board and the CEO, or how the different suggestion schemes were used and organized. We have also used public information on FIAT innovation process and on MIO, including annual reports, FIAT website, the FIAT MIO website, as well as bibliography about crowdsourcing and innovation at Fiat and Fiat MIO. At the time of the data collection, in May and June 2016, the company was in the middle of a merger with Chrysler. The objectives and interests of FIAT were very far from the MIO experience, and from the different uses and learning that occurred from using crowdsourcing. The merge, in addition to the time span, worked as a memory filter. While this could permit us to get some more objective information about the effective reconfigurations occurred as a result from learning from adopting crowdsourcing, it may also have obscured some other learning especially at the level of routines that became so interiorized by people before the merge that may be considered preexistent to MIO.
Our data analytic strategy involved coding interviews and written documents in an iterative manner (Charmaz, 2006; Corbin and Strauss 2008), moving back and forth between emerging theoretical categories and our data. Initially, we began with our overarching research question around the processes of re-configuration of the routine, processes and organizational structure for adoption and abandonment. Coding data around this theme permitted to identify the main characteristics of the process of re-organization and learning that crowdsourcing favored. We later narrowed, based on our coding, to more specific concepts. At organization level we focus on changes in structure and in strategy. At process level we focus on changes that occurred in the process of interaction with external actors such as suppliers and universities, and in the internal process of knowledge search and recombination for new product development. At the routine level, we focus on the practices used for knowledge search, selection, storage, recombination and appropriation. Our resulting key themes are listed in Table 1.

Table 1- They themes in the organization, processes and routines

<table>
<thead>
<tr>
<th>Organization levels</th>
<th>Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization</td>
<td>Structure</td>
</tr>
<tr>
<td></td>
<td>Strategy</td>
</tr>
<tr>
<td>Processes</td>
<td>Interaction with external actors Internal</td>
</tr>
<tr>
<td></td>
<td>Process for new product development</td>
</tr>
<tr>
<td>Routines</td>
<td>Search horizons</td>
</tr>
<tr>
<td></td>
<td>Knowledge exchange and recombination</td>
</tr>
<tr>
<td></td>
<td>Articulation of openness and value appropriation</td>
</tr>
</tbody>
</table>

Next, because our intention was to understand the innovation processes in its relevance to the organization, we engaged in a process analysis (cf. Langley, 1999). In order to establish what was maintained and what changed during and after the use of crowdsourcing, our analysis focused on the process of product development, before, during
and after MIO. In our coding, we identified key critical events that were mentioned in interviews and documents, allowing us to lay the process out longitudinally: decision to use crowdsourcing, the end of the project and the creation of the Innovation Department. We thus narrate below the way in which our main themes evolve over the process of innovation.

4. Product development in FIAT

4.1. Product development process before MIO

Since the foundation of the Development Center, i.e. 2003/4, the development processes started at the Style Centre, which relied upon scenarios and marketing surveys undertaken by the marketing department to discuss ideas for the kick-off of future models' developments. The Style Center elaborates new conceptions upon this information and looking at existent portfolio. It transmits the product concept to the project engineering departments, which is responsible for detailing the product concept. Thus, calculations, tests and specifications are made regarding systems, components, materials and production. The next step involves experimental engineering department tests, experiments and prototyping. Finally, the planning engineering and costs analysis are made in collaboration with the other units. The Development Center's team interacts in order to solve problems regarding the evolution of the project, from conception to prototyping.

The marketing department's support is important for the kick-off and brainstorming, to boost creativity around the product concept. This department provides scenarios about customers and market's tendencies and technological evolution. The style center has also conversations with the purchasing department, which reports on suppliers' ideas, technologies and future developments, as well as the production people database of ideas. The Style Center elaborates, thus, the product concept for a new model based on successes and failures in the existent portfolio of products, these reports and their own experience and background. A briefing for the new product concept is elaborated by the Style Center and provides the engineering team information for building up the technical specifications, looking firstly at available technologies (first at Fiat's suppliers and after at other potential suppliers). This briefing contains information about what, how, to whom and why. During the technical concept elaboration, virtual tests are made and their results included in the
briefing. The technical development is made looking at availability of technologies in specialized suppliers, such as Magneti Marelli, Delphi and Bosch, among others, and experimental engineering. The specialized suppliers could be involved in the development process if the technology was not "ready" to be used in the new product concept. The normal time for developing a new product was 36 months.

Partners were defined according to the complexity, availability/time to incorporate the technological solution, costs and impact, among others. The role of universities is in research and training of people in fields of Fiat’s interests. According to Arruda, Salum and Rennó (2012a), university interaction involves technical and post graduate training for improving employees’ skills to undertake activities and solve specific problems. According to interviewees, the engineering centre considered the development of these skills crucial for Fiat, especially for product differentiation, and for production process efficiency and management/organizational processes. Identification of partners to involve in the product development process followed the pattern below:

- internal sourcing for ideas - different people form distinct departments/units could be involved according to the project;
- select efficient solutions; and
- look and integrate new "actors" (external) to be part in the "talking"/discussions, if necessary.

The Development Center used a completely different product development process in the MIO's case. Particularly relevant is the fact that the objective was unique, rather than aiming at developing a car based on existent models and available technologies, the Style center team would like to develop a car for the future. The team introduced the crowdsourcing tool to gather ideas about what would be a car for the future. The new model was planned to be a "concept car" and not a car for production.

4.2 Origins and Use of Crowdsourcing, the MIO concept car

In 2006, Fiat Brazil, as part of its 30th anniversary celebration, launched a call for ideas that would capture people's imagination about the future, posting photos, videos,
comments and etc. at the automaker’s website. This experiment was transformed into a marketing campaign and was the seed to the use of crowdsourcing for product development (Saldaña, Cohendet and Pozzebon, 2014). At the same time as the open source marketing experience, the Style Development Center made the first concept car (FCCI). After that, the Center presented the second concept car (FCCI)1 in 2008. The experience in building these two concept cars was also an important contribution to the idealization of the MIO concept car.

The concept car MIO was the third concept car (FCCIII), launched in 2010 at the Brazilian São Paulo International Motor Show (Salão Internacional do Automóvel de São Paulo). Figure 1 shows the MIO car. It took, approximately, 15 months from the kick-off to the prototype of concept car version. The concept includes technological developments such as in the use of organic fiber, electric power and connectivity, among other innovations as biometrics, voice control and solar and "indigenous" (autoctone) generated energy. It was the first Fiat product built up with the use of an open source platform (website) to get users involved. Users, and everyone around the world, could send their own ideas about a car for the future, its design, engineering, production and marketing. According to the interviews and the literature (Arruda et al 2012a and b; Saldaña et al, 2014), this experience paid off for the automaker as the MIO was an international success, although it was only a concept car not planned for production, and many ideas could be used to improve existing Fiat’ models and well as internal processes.

\[^1\] In 2006, the first concept car had original color (metallic orange which varies shades when light changes) and style adventure, which inspired new models for production. The second concept car, in 2008, was an electric bogue with a distinct design and organic fiber in the fuselage, made with fibers from the Brazilian eco diversity (Tanure and Patrus, 2011). These two concept cars inspired MIO, which combines an adventure appeal, electric power and organic fiber at the fuselage in an original design. Besides that, the development process was complete different because MIO was developed using crowdsourcing (Arruda et al 2012a).
The MIO's overall development process (figure 2) can be divided into four major steps: original idea; mapping scenarios; exploring, selecting and implementing concept ideas; and branding the future car. The original idea had, mainly, two Fiat's areas involved: the directory board and the Style Center. The Style Center team talked with the marketing department for understanding possible scenarios for the FCC III, which should follow the normal process at the Development Center and considered previous concept car ideas. Initially, their question had been how they could show a different car model at the Motor Show and develop it faster than before, as it should be launched in approximately 15 months. According to the interviewees, the crowdsourcing tool came out as a simple idea from the brainstorming meetings, when they decided to launch a completely new model not based in any model launched previously. The crowdsourcing tool was adapted to Fiat's product development process and was called "Creative Commons".

Secrecy in the automotive industry is one factor that inhibits the use of crowdsourcing. The development team's idea was to break that paradigm and get users involved in the design thinking process. Meanwhile, Fiat executives were embedded in learning about enhancing Fiat Brazil's innovation approach based on the lessons from Google and the automotive industry history, among others. When the head of the Style Development Center proposed to use crowdsourcing to design and produce the third concept car to the FIAT director, the director accepted because he was already happy with the good experience of the marketing campaign of 2006 and looking for creative ideas to
enhancing innovation. The investment was possible due to the good market moment of Fiat Brazil and the government tax incentives (production, innovation, others).

Figure 2 - Fiat MIO’s Development Process

A development team was created by the Style Center area, which started by reflecting and brainstorming about the future. Fiat Brazil subcontracted a company, which was already a supplier, to develop a communication plan for a co-creation participatory development to the FCCIII. This company and Fiat’s internal team collaborate in the development of a new approach to the use of Internet, which was different from the use of
Fiat Brazil's own website and process for the marketing campaign of 2006 and programs to capture ideas from employees and suppliers.2

The company and Fiat's team were in a daily basis working together to develop and launch the platform for the open source of ideas in the product development process. The platform was called the Creative Commons. The company suggested that sharing of ideas should be divided into mapping scenarios, concept idea and concept design. Fiat's team and the supplier, according to the interviews, continued collaborating closely, in an "online" basis, during the entire project.

In order to launch the call for Users to give their ideas, it was necessary to define the key questions to pose to them. For that purpose, the FIAT development team used several different means to identify the relevant topics. First, the development team and the marketing department map scenarios from the history of automobile's models, brainstorming and marketing surveys (to create the key question which will be at the website and motivate the crowd. Second, Fiat requested six automotive journalists to investigate “the car of the future and the future of cars”; to map future trends and scenarios (Saldanha et al, 2014, p.3). In August 2009, the final key question was defined, and it was posted in the Fiat MIO crowdsourcing platform. The question was “In the future we are building, what must a car have in order for me to call it mine, without ceasing to serve other people?” The development team was composed by the company that developed the platform, (advertising agency), Fiat's internal people (from different units, not only from the

2 There were internal programs for capturing ideas from employees and suppliers, as well as suppliers' employees, such as BIS, developed by Fiat Brazil, and SuPER, which was based on Fiat's Turin experience (Gomes and Camargos, 2009; Arruda, Rossi and Savaget, 2011). The Good Ideas and Solutions (Boas Ideias e Soluções - BIS) was implemented in the 1990s and still exists. The main objective was to get employees involved in the process of continuous improvement and evolved to optimize spending, process simplification, eliminate wastes, increase efficiency and competitiveness through costs reduction and improving quality. Many rewards were given to the selected ideas, following the Quality Programs' fashion. Fiat organizes suppliers' involvement and motivation to collaborate under the SuPER program. Suppliers, and their employees, are given rewards if their ideas are selected, such as sharing the financial gains for the first year of the idea's implementation. The ideas gathered by each of these processes were selected by a dedicated team in each program, composed by, mostly, engineers and a representative from the finance department. Monthly, each team leader presented the results and selected ideas to the directory board, as well as the adopted strategies and problems (Gomes and Camargos, 2009). There was a system to manage and storage all ideas, even the ones that were not selected. Fiat's managers understand any idea could be useful in the future, in another context (Arruda, Rossi and Savaget, 2011).
Development Center), and the Creative Commons. The website content was refined on a daily basis.

Exploring, selecting and implementing concept ideas was the third phase of product development. The website FiatMio.cc (figure 3) was the open source platform for getting ideas from people all over the world that is the Creative Commons. The development team elaborated the briefing for the car product concept and the prototype to capture the preferences from the Creative Commons and refine them. The selection process was made by the editor of the advertising agency, who processed all the information received from the crowd, with the close collaboration of engineers and designers from Fiat. The editor wrote reports, made classifications and refined questions and answers. All the information was "filtered" by the editor, who acted as a "bridge" between the crowd and Fiat's engineers and designers (Saldanha et al, 2014). The process of managing, motivating and selecting ideas was not an easy task due to subjectivity involved in the decision of what was a good idea and what was not, among other issues. The development team was in direct contact with the crowd ideas through the website platform.

Figure 3 - Website Platform: FiatMio.cc

The website FiatMio.cc (figure 3) was the main communication platform between Fiat and the public. A community of 17,000 people, approximately, gave more than 11,000 ideas, discussed proposals, voted in polls for deciding about the car features, production,
engineering, and branding/marketing. At this website, Fiat also published studies, news and other content about the automotive environment, to inspire the crowd and promote their participation. Some examples of ideas generated from the crowd were: refill car (all upgrades should be incorporated by old models), inertial battery (KES electric), use of solar energy, self generate energy while riding, and smart car to ride in large cities, among others.

The company responsible for the management of the platform and the Fiat's engineers and designers divided the content of the posts into approximately 20 major themes, such as energy efficiency, cabin space and onboard biometrics, among others. This classification facilitated the use of the crowd ideas by the development team.

After the classification, the development team posted the themes at the FiatMio.cc for further consideration by the crowd as an open concept design (Saldanha et al, 2014). Each theme was open to discussion. The discussion was motivated by a question, which was explained and led to a second question, to be answered and motivated discussion by the crowd. The refining of the discussions in possible designs was an important yet difficult task. The development team searched for possibilities and then came out with a reduced number, which were transformed into more precise questions posted for consideration by the crowd. The crowd, then, was to discuss and vote, indicating their preferences for the proposed technologies and design details.

After that, the modeling of Fiat MIO, i.e. during the prototyping, continued the close collaboration between the development team and the crowd. Fiat's development team posted drawings for MIO on the website and called for the crowd's preferences, comments and votes. Once the development team was satisfied with the results from discussion and votes, it moved on to the prototyping. According to the interviews, the development team also talked to the procurement department in order to know which technologies were already available, which were in a prototype phase and which were in development by suppliers and by the research groups, at universities, with which Fiat had already collaboration. This step was part of the team's search for moving on with the selected (voted) ideas by the crowd. As MIO's were supposed to be a completely new model, getting knowledge about developments of suppliers and universities helped in the selection and creative processes. These involvements, together with the Creative Commons participation, lead to the elaboration of MIO's prototype.
Due to secrecy, the development team paradox was to work with open innovation/crowdsourcing tool and in secrecy. The team worked in an already existent "white hangar", built in 2003, similar to a matchbox, without windows and closed to other workers and visitors, located closely to the main plant of the FCA fabric in Betim. Cameras, notebooks and other electronic devices were strictly prohibited. Visitors were forbidden. Approximately 45 designers and engineers could enter the "white hangar".

At the beginning of the prototyping phase of the MIO's project, the development team opened up their work in the prototype to a webcam, as well as posting drawings as explained before, and people at the FiatMio.cc website could give ideas, preferences and votes. They closed the discussion and invited the crowd to participate at the Motor Show nearly the ending of the final prototype. As secrecy was very important for marketing purposes and competition, the final version of MIO concept car was built in, approximately, 24 hours before moving it to the opening up of the 2010 Sao Paulo International Motor Show. In the very end (especially in the last 24hours), fewer than the 45 of Fiat's people (designers, engineers, from the shop floor, among others) worked in completely secrecy (where no one else could observe).

After the launching of Fiat MIO, the interviewees explained that the experience changed the way Fiat's people saw innovation and projects. Fiat's executives were expecting to get fewer responses from the crowd, mostly car hobbyists, and instead sooner it got to around 10,000 people from worldwide and with different backgrounds. Other important contributions of the MIO's crowdsourcing experience to Fiat Brazil was to get closer to people, understand their desires and preferences, learn about how to collaborate internally and with external suppliers (advertisement agency) and people worldwide (Saldanha et al, 2014; interviews). Fiat's executives considered that there were preferences that could be used as ideas to innovate upon already existent models. In short, the most important achievement of the MIO's crowdsourcing experience was the strategic importance given to collaborative/open innovation by Fiat's executives, engineers, designers, technicians and marketing people, among others involved in the process.

The MIO's project and the website platform did not end with the launch of the car at the 2010 Sao Paulo International Motor Show. Fiat reinforced its connection with potential customers and continued getting preferences and comments from the crowd. After the
Motor Show, Fiat's executives considered their opinions as possibilities for improving future car models, both concept cars and cars designed for manufacture. The crowdsourcing platform was operational until 2015. According to Saldanha et al (2014, p.4), "the prototype was regarded mostly as a map of consumer wishes, and some of the new features could ultimately be integrated into new cars available for purchase."

In sum, a combination of factors - market growth, increased market competition, government incentives and internal people's discussions - worked as a favorable context for the firm's crowdsourcing adoption initiative. Producing a very innovative concept car was of high strategic importance for the firm, which expected to create brand appeal among customers worldwide. Adoption of crowdsourcing was motivated by the search for new product functionalities and marketing, rather than being an end in itself. In other words, the adoption of crowdsourcing was not motivated by the expectation to improve its image of being innovative management; crowdsourcing was understood by firm's management as the tool that could permit the firm to develop a very innovative concept car. One important dilemma for Fiat's use of crowdsourcing was secrecy versus openness. Not only did crowdsourcing practices of ideation have to be highly readapted to fit the strong IP rules of the automobile industry, but also its adoption required several changes in the organization. At the end of the project, according to the interviews, secrecy won and the crowdsourcing tool was a great experience but left to the "periodic table of innovation", and perhaps to be used in another project, later on (2015) after the MIO's launching at the Motor Show.

4.3. Crowdsourcing abandonment, project, processes and routines

Organization/ firm level

Given the importance of secrecy for the industry, the crowdsourcing adoption decision was from the beginning a partial and temporary one, i.e. it was adopted for a single project and it was to last for the duration of that project. The adoption and abandonment of crowdsourcing motivated the reconfiguration of product development activities. Following the success of the initiative, the firm put innovation on the top of its strategic priorities. According to interviews, the MIO's project success influenced FCA Brazil structuring and formalizing the department of innovation management (DI) and its activities. Parallel to the MIO's experience, the planning unit was rethinking the strategic planning that ended in
2010. This assessment suggested the importance of creating a formal department for managing innovation. This suggestion became visible to high level executives due to their decision to improve innovation at the company and the MIO's crowdsourcing experience. The MIO experience created internal awareness of the complexity in managing different sources of ideas (employees, suppliers and the crowd), store ideas, and make useful and friendly these ideas and knowledge sources available to all departments. The executives of FCA recognized then the importance of having a department to manage innovation with the objective to turn innovative practices developed to manage the innovation processes into “the DNA of FIAT Betim”, i.e. to codify these practices and make them visible to everyone in the organization, and called for a formal proposal to the strategic planning people. This proposal was presented in 2011 and included the innovation strategy at FCA Brazil. The DI was created in 2012 to fostering, monitoring and managing innovation activities from product development and production to the firm’s strategic level.

Besides putting innovation on the top of its strategic priorities, After the MIO, Fiat Brazil felt it could launch itself into more ambitious innovation projects, i.e. for the development of technologies that are less "mature" according to Fiat's technological and market researches and scenarios. For this purpose FIAT engaged in R&D collaboration with partners (universities and research centers) aimed at developing technological solutions for some suggestions and themes that came out from the Creative Commons that are not available on a commercial/safety basis. The interviewees informed that Fiat decided to invest in research to increase the sustainability of its cars and reverse the public idea that cars are worsening public mobility in urban areas. They mentioned as example collaborations focused on development of technologies that permitted greater connectivity (drive a car by voice, systemic approach as IoT - internet of things), as well as on the use of sustainable energy (solar and autoctone generated). For example, FIAT was collaborating with CSEM Brazil for the development of a photovoltaic cell for electric car.

3 http://www.csembrasil.com.br/p/quem_somos
Processes

After MIO, FIAT engaged in the development and reconfiguration of several processes with the aim of accessing and creating value from knowledge from different sources, as well as to increase knowledge exchange and recombination. We will discuss here the reconfiguration in the process of interaction with external actors, such as suppliers and universities, and in the process of new product development.

Interaction with external actors for ideation and problem-solving

With the aim of improving appropriation of knowledge developed with external actors, FIAT revised incentives and rules. For example, incentives to conduct formal studies and research, in particular PhD thesis existed before MIO and continued after MIO. However, according to the interviews, after MIO employees were encouraged to work on topics of Fiat's interest rather than on topics of their interest as before. Indeed, PhD thesis of the employees needs to be in topics of the interest of the firm. The PhD topic was first discussed with the employee's leader and it should focus on issues related to the unit's main problems or opportunities. The employees were also encouraged to discuss the evolution of the studies and results with the team.

Following learning from the MIO on how to source ideas from the crowd and on how to select and store them, several changes were observed in the processes of suggestion schemes managed by the procurement department. BIS (Boas Idéias e Soluções), the suggestion scheme targeting FIAT employees, was introduced in 2001. Every 50 suggestions that are implemented are ranked and prizes distributed to the employees that suggest them. SuPER (Supplier Performance) targets suppliers. The first year financial gain of every implemented proposal is shared with the supplier. Finally, SuPER Idéia targets suppliers' employees. In this case, the first year financial gain of every proposal that is implemented is shared with the supplier and with the supplier employee that suggest it. According to the interviews, the internal programs for capturing ideas from employees, suppliers, as well as suppliers' employees were revised following learning from the crowdsourcing experience. The changes occurred both on the IT system used to run the suggestion schemes, and consequently on the process of suggestions and ideas disclosure, data storage, and selection, but also on the process of reward. Concerning idea disclosure, there is currently a
website platform for each program (BIS and SuPER) and people (employees and suppliers) can give ideas at any time, and all ideas stored in a database in the IT system. The selection process is made, firstly, by the unit manager and, if selected, it is sent for economic and technical assessment by the team responsible by the program. These teams include employees from different units and backgrounds. Before MIO suggestions had to be filled into forms available on the intranet. Idea selection was mainly done by the manager of the department that was directly targeted by the suggestion. The selection process continued in a type of "funnel model", until selected ideas were presented to the directory board and the author was rewarded. After that, the idea enters in the phase of implementation and is considered an innovation. The other departments were not accessing all the ideas but the ones the chief selected. With the new IT tool, suggestions are filled in the form online and the database is available to all departments so that all can search and look for all the ideas.

The marketing survey/scenarios were the forms used by FIAT to access ideas and suggestions from customers. The MIO's experience was an attempt to get "out from the cave" of surveys/scenarios and of employees and suppliers suggestions and get directly in contact with the crowd. Crowdsourcing permitted to access to suggestions and ideas from everyone interested around the world not only employees and suppliers. In addition, MIO experience permitted to rethink and reconfigure the process of idea selection and development. Ideas may inspire and stimulate differently different people, hence, all the ideas rather than only the selected ones are made stored and available to every employee.

Finally, some of the new processes for new product development created for accommodating the use of crowdsourcing persisted after the MIO. From 2012 to 2015 the website platform was operative. FIAT continued to capture ideas, preferences and opinions from the crowd for approximately five years after the end of the project, as the directors thought it could be a good way to get ideas for other models. The Internet users knew that and continue given opinions. The employees working on MIO, in the white hangar, had however returned to their department areas, and from there they were using the website platform but with a different purpose. In 2015, Fiat ended the MIO's website platform and the development team no longer worked at the "white hangar", although the hangar was not demolished. The website is public but the "white hangar" is a kind of "touristic point" at the Betim plant that visitors can see from outside. Visiting inside is restricted. The
crowdsourcing website platform is offline in 2015/2016 and part of the tool box of the company.

Internal process for new product development

Following the experience of MIO, there was a shared understanding that everyone could be a relevant source of information and creativity for innovation. "creative ideas can come from anyone". There was then the need to encourage all FIAT employees to disclosure their ideas and know-how, but also to foster their use, recombination, and appropriation. With objective of improving individual creativity and organizational innovativeness, efforts were put in formalizing processes of knowledge search and recombination, and in opening access to FIAT employees.

Learning by using crowdsourcing inspired changes in processes aimed at searching and accessing new technological knowledge as well as in collecting ideas and suggestions for improvement. As mentioned before, the suggestion schemes were revised to accommodate learning from MIO, communication channels and incentives were developed or improved to encourage employees from all departments to be involved in innovation, increasing value, and reducing costs, as well as encouraging long-term external partners in identifying and sharing improvement opportunities.

Following the MIO project, specific rewards for disclosure of ideas have been introduced so that more employees feel stronger about disclosing their ideas and suggestions for improvement. The concern was not only to encourage disclosure of ideas, but also that all ideas are properly stored so they could be used in the future. Fiat thus improved the database of ideas and the interconnection among these ideas and between departments. With the new IT tool, all the suggestions and ideas are stored in the database which is available to all departments. The process of idea selection is now designed as an intermittent hierarchical process as the one in MIO, involving a group of employees from different departments that narrow down the problem-solving and search focus to direction the discussion and obtain targeted ideas and solutions.

In addition to improving the process of knowledge search, selection and storage, efforts also were put in enhancing knowledge exchanges across departments and layers, as well as improve knowledge recombination. Experience in using crowdsourcing inspired
revision on the way coordinating knowledge exchange and recombination. The Department of Innovation has as function to coordinate of innovation activities across the company, increase knowledge exchange and recombination and to stimulate creativity and innovation. It does so by supporting departments in their demarche for innovation.

At the request of the department manager, DI people will join the department team to identify the problem/question, plan the process for problem-solving and for implementing the idea selected. DI will help the choice of the tool that can facilitate each of the different phases of different innovation development projects. Following the awareness of the existence of several different tools that can help to foster ideation and problem-solving during MIO, DI elaborated a manual, the "periodic table of innovation", with a list of tools that departments engaged in innovation projects could use. The tool box did not exist at Fiat Brazil before 2015 and was in the phase of improvements by the time of the interview due to Fiat merger with Chrysler. The tools available at the "periodic table of innovation" were meant to help units to formalize the process of innovation from ideas to results, they address specific needs related to increase, organize and appropriate team’s creativity. The choice of tool is based on the specific innovation development project, identified opportunities and/or problems, and expected complexity. After the abandonment of crowdsourcing in 2015, the crowdsourcing process developed by Fiat was one of the management of innovation tools people could use at FCA group. It is a latent practice that is to be re-used to support and frame intra- and inter-collaboration, to organize internal people's ideas for problem solving or reducing the time to innovate.

Besides supporting the team in elaborating a specific plan for innovating, with the choice of relevant tools, DI is also responsible for identifying the potential for inter-department collaboration or for collaboration with external partners (suppliers and universities). Following MIO experience, intra and inter organizational collaboration is understood as means to give different meaning to information and ideas, and consequently to appropriate and integrate innovation efforts.

Routines

Even after the firm discontinued crowdsourcing for generating/accessing creative ideas from the crowd, several changes in the routines and processes occurred as a
consequence of the adoption. Practices for the design of new cars after MIO, in particular Routines for search, selecting, exchanging and appropriation of ideas did not go back to the old practices before MIO.

During MIO, engineers and designers had a rich dialogue experience with the advertisement agency and internet users from different backgrounds and cultures that resulted in a very innovative car and market success. With MIO, engineers start believing that "creative ideas can come from anyone" that is from the crowd, from internal employees and from suppliers, among others. As a consequence, engineers and designers kept open horizons in the process of product ideation in order to consider other people's ideas and suggestions. In addition, teams became more multidisciplinary and collaborating more closely with other units, such as production, marketing and the new DI throughout the project. Before the MIO, engineers worked almost alone based on the reports and meetings with the marketing department. In certain phases of the product development, especially in the prototyping phase, they interact with production people. Engineers thought the great ideas will come only from engineers and technicians’ minds.

Engineers and designers developed more open search horizons to consider other people's ideas and suggestions, but they also developed routines to enhance knowledge recombination and exchange. During MIO, the product development team developed specific routines for knowledge exchange and recombination. For example during MIO, ideas come from the crowd were selected and discussed at Fiat by a diverse team of people from R&D, production, marketing and communication and in collaboration with the advertisement agency new more focused questions and challenges were put to the crowd and a new flow of ideas came again more focused. This routine of planning a sequence of intercalating processes of search, selection and recombination was developed by the MIO development team to accelerate and use more effectively the ideas and knowledge from the crowd. This routine of knowledge recombination and selection is in great contrast with the routine used before MIO. Before the Mio, process of innovation involved a process of funneling, departing from the many ideas that would be developed through the daily operations of FIAT Betim worked (Bis, Super and reports) and moving through hierarchical selection until reaching the “one” to be implemented.
After MIO, other applications have been found for this routine of planning problem-solving and ideation across a sequence of short processes of knowledge search, selection and recombination. It was understood that by singling out problems, not only internal discussions and possibilities for disclosure of new ideas encouraged, but also it was possible to reduce the problem of knowledge leakage.

Other routine that was developed during MIO and later reused in different contexts is the "virtual room". After the MIO virtual room kept being used, and this routine has been re-adapted to other contexts. Fiat's employees have increased the use of discussion meetings through video conference with engineers, designers, and other actors located in different countries. These meetings are not only used to increased interaction among FCA group's R&D centers worldwide, but also to meet with specialists in topics of importance to Fiat, for example, at universities worldwide.

Finally, work with crowdsourcing and transform ideas in results, yet maintaining secrecy about the final version of the new model, is still one of the major concerns of the development team during MIO. Learning from MIO, the team is now bringing to the debate very specific topics.

4. Discussion

In the case of FIAT the crowdsourcing project ended with no further project in planning. However, FIAT continued to capture ideas, preferences and opinions from the crowd for approximately five years after the end of the project. The crowdsourcing website platform continued active on the Internet as the directors thought it could be a good way to get ideas for other models. The Internet users, aware of the continued existence of the site, continue to provide input despite the end of the program. Moving toward the level of the process and the practice, one observes that earlier adoption has led to changes that likely to create “drag” on top-down strategy. Hence, our results suggest that differences in the effectiveness of the abandonment across the different levels of the organization create disjuncture between levels at the moment of abandonment, where decoupling occurs between levels as a result of the change, and this decoupling can also lead to further changes in the organization structure and strategy. In other words, the de-coupling of the
levels themselves is a result of the change, which makes people aware of the difference between latent/tacit and formalized knowledge.

The lack of effectiveness of abandonment at process and routine levels results from the re-organization of firms’ process and routines as well as of its organization structure and strategy. Learning occurred through early adoption may permit change of established practices and processes. It may also permit to generate another round of change (this time bottom-up) in the organization strategy and in the process to implement the learning occurred during adoption.

These two dynamics (differences in the pattern and effectiveness of abandonment and in the decoupling across organizational levels) suggest the following: In adoption processes, new routines need to be established. Because these routines are being built into “new” territory, they are likely to meet with resistance to the unknown, but do not challenge established routines and processes. In abandonment processes, some of the processes and routines developed to implement the fashionable management practice are melted into the firms’ knowledge base, and difficult to undo. They are likely to coexist with new processes and routines, exist in a latent way.

5 Conclusion

This paper has aimed at providing insights on the process of abandonment of use of organizational and management practices. It did that by examining the process of adoption and abandonment of crowdsourcing practices in a large automobile company in Brazil.

Our evidence suggests that abandoning the use of a new management practice is not synonymous of unsuccessful experience with the practice. The process of abandoning the practice may inspire re-adaptation of other practices and processes inspired in the learning from the experience in using the practice. In addition, abandoning a practice is not identical nor at similar speeds at different levels of analysis. At firm/project level, abandonment is mostly effective. At the process level, which involves a collection of different procedural “repertoires”, abandonment is only somewhat effective; it involves reconfiguration of existing processes based on learning from adoption experience, and it involves a plurality of latent/dormant processes that can be invoked later. At the level of routines/practices, which
depends on organizational culture and deeply ingrained procedural knowledge about interaction and craft, abandonment is least comprehensive. Hence, abandonment in the use of the fashionable practice does not mean the abandonment of routines and processes and organizational structures that were adopted to fit the fashionable practice. In sum, moving toward the level of practice one observes that earlier adoption has led to changes that likely to create “drag” on top-down strategy.

As abandonment leaves great changes in the organization and processes but also on the firms’ routines, even if new practices emerge and diffuse rapidly, the organization, processes and routines of firms that adopt these practices may keep its degree of uniqueness reflecting in particular the different efforts and experiences. In addition, the degree of independence of the successive practices is to a large extent questionable. Firms’ reconfiguration of the practice during adoption will depend on prior experience with other practices later abandoned. Therefore, prior literature finds that the goal and content of the innovative organizational practice evolves as the practice diffuses, often accommodating characteristics of earlier fashions and borrowing elements of subsequent ones and eventually changing it complementarity/substitutability relationship with other practices and technologies innovations (Bodas Freitas 2008; Huczynki, 1993; Geroski, 2000).
References

31

32

Studies, 35(9), 1245–1264.

