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Abstract
This paper analyzes the effect of research and development (R&D) intensity and other economic determinants on the
innovation output of the Dutch pharmaceutical sector. A dynamic count data model is developed and applied, in the
context of panel data framework (following Wooldridge, 2005). Our model incorporates the R&D intensity and other firm
characteristics as explanatory variables. Although, both patent counts and citation-weighted patents can be viewed as
indicators of technological impact and information flow, the latter reflects the quality of the patents. Hence, we consider
both patent counts and citation counts, also for EPO and USPTO patents individually, as the innovation output indicator.
From the estimated results, it is found that the R&D efforts have a positive and significant impact on both the patent
counts and citation-weighted patents. This confirms the fact that, R&D acts as a major determinant for generating new
patents. Concerning the role played by firm size, there seems to be a positive and significant relation between
innovation output and size of the firms. But the significance becomes less prominent when we allow for random effects.
Age of firms seems to have a negative and significant relation with innovation output. This signifies the fact that young
firms are more enterprising, and are more innovation prone. Our model is further extended by incorporating dynamics,
whereby it is observed that Dutch Pharmaceutical firms innovate persistently over time. This phenomenon is prominent
for both patent counts and citation-weighted patent counts.
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ABSTRACT 

This paper analyzes the effect of research and development (R&D) intensity and other 

economic determinants on the innovation output of the Dutch pharmaceutical sector. A 

dynamic count data model is developed and applied, in the context of panel data 

framework (following Wooldridge, 2005). Our model incorporates the R&D intensity and 

other firm characteristics as explanatory variables. Although, both patent counts and 

citation-weighted patents can be viewed as indicators of technological impact and 

information flow, the latter reflects the quality of the patents. Hence, we consider both 

patent counts and citation counts, also for EPO and USPTO patents individually, as the 

innovation output indicator. From the estimated results, it is found that the R&D efforts 

have a positive and significant impact on both the patent counts and citation-weighted 

patents. This confirms the fact that, R&D acts as a major determinant for generating new 

patents. Concerning the role played by firm size, there seems to be a positive and 

significant relation between innovation output and size of the firms. But the significance 

becomes less prominent when we allow for random effects. Age of firms seems to have a 

negative and significant relation with innovation output. This signifies the fact that young 

firms are more enterprising, and are more innovation prone. Our model is further extended 

by incorporating dynamics, whereby it is observed that Dutch Pharmaceutical firms 

innovate persistently over time. This phenomenon is prominent for both patent counts and 

citation-weighted patent counts. 

 

 

 

 

 



����� � � � �

�

 

1 INTRODUCTION 

Although, both R&D and patents are used as indicators of technological capacity of firms, 

it has often been recognized that the measures capture different aspects of the innovation 

process. While R&D expenditure can be viewed as a measure of the resources devoted to 

innovation, patents reflect the results of the innovation processes. Different innovation 

output indicators include patents, innovative sales, innovation counts or product 

information. But patents are widely used as a proxy for innovation output, as it is more 

appropriate for our study, based on the innovation intensive pharmaceutical industry. The 

quality and availability of the data on R&D and patents has improved and refined in the 

recent years. Computerization of patent offices and regular surveys of R&D activities 

allows researchers to perform detailed analysis of Patent-R&D relations. Therefore, we 

attempt to analytically and quantitatively clarify the contemporaneous relation between 

patenting and R&D expenditures at the firm level using a panel data framework. 

Patent has always been recognized as a rich and potentially fruitful source of data for the 

study of innovation and technical change. Patent data is particularly pertinent for studying 

pharmaceuticals because drugs are one category of innovation where the incentive-giving 

role of patents works best, given the considerable investments they require. The 

pharmaceutical industry is intensively research oriented, performing various innovation 

activities consistently. Levin et al. (1987) showed that a patent is the most effective 

method to appropriate returns in industries with chemical base, such as pharmaceuticals. 

This in turn enables them to recover the R&D investment.  

In recent literatures, citations weighted patents are mostly used instead of simple patent 

counts. Patent citations allow one to study spillovers, and to create indicators of the 

"importance" of individual patents, thus introducing a way of capturing the enormous 

heterogeneity in the “value” of patents. Innovations vary extensively in their technological 

and economic importance and significance. Moreover the distribution of such 

“importance” or “value” is highly skewed. In the works of Schankerman and Pakes (1986) 

and, Pakes and Simpson(1991), patent renewal data is used, which clearly revealed this 

drawback of simple patent count data. In our analysis, we focus and deal with the citation 

weighted patents, in addition with simple patent counts, as innovation output indicators. 
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Forward citation counts is generally used to denote citation-weighted patents. If a patent 

receives citations from other future patents, this is an indication that it has contributed to 

the state of the art. In other words, a generality score suggests that the patent most likely 

had a widespread impact, influencing subsequent innovations in a variety of fields. Hence 

the term “generality” is labeled on forward citation weighted patents. “Originality” of 

citation weighted patents is defined in a similar way, except that it refers to citations made. 

Thus if a patent cites previous patents that belong to a narrow set of technologies, then the 

originality score will be low. Similarly, citing patents in a wide range of fields would 

render a high score. Earlier studies have shown that forward citations are positively 

correlated with the monetary value of the patent (Harhoff et al., 1999; Lanjouw and 

Schankerman, 2001; Trajtenberg, 1990), which clearly reveals the fact that forward 

citations act as a barometer for determining the worth of the patents. Based on the study by 

Hall et al. (2005), the pharmaceutical sector has distinct characteristics of discrete product 

technologies where patents perform the traditional role of exclusion, and citations measure 

their value on an individual basis.  

 

In this paper, we implement statistical models of counts (non-negative integers) in the 

context of panel data, in order to analyze the relationship between patents and R&D 

expenditures. The model used is an application and generalization of the Poisson 

distribution to allow for independent variables, persistent individuals (fixed or random 

effects) and noise or randomness in the Poisson probability function. In addition, our panel 

data allows us to analyze the relation between past innovation activities to current 

innovation activities. Consequently, this helps us to comprehend if there exists a 

persistence in innovation at the firm level. Since innovation is concomitant to firm’s 

growth, permanent asymmetries in productivity can be due to permanent differences in 

innovation. In general, micro level studies that look at the dynamics of patent-R&D 

relationship show evidence of the persistence in innovation (for example, Van Leeuwen, 

2002).  

 

As posited by Peters (2007), a couple of reasons can be cited for firms to innovate 

persistently. Firstly, the dynamics of a firm’s innovation behavior is an essential 

assumption for endogenous growth models, that rationalize the idea of intertemporal 

complementarity in innovation. Secondly, the so-called “success breeds success 

hypothesis” assumes that firms become more prosperous through successful innovation, 
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due to broader technological opportunities. Finally, some theoretical explanations consider 

the sunk costs in R&D investments as an important source of persistence since they create 

barriers to entry, causing engagements to continue innovation. It is observed that the 

pharmaceutical sector, which is primarily based on knowledge, is more susceptible to 

technological accumulation or pioneering in persistence in innovation, compared to other 

industries. Also, the innovative pharmaceutical firms has the tendency to patent their 

inventions steadily, even by marginally changing their past innovations, so that they can 

ward off unwanted competitors or imitators.  

 

Therefore, apart from identifying the relation between R&D expenditure and innovation 

output, the contribution of the study is two-fold. Firstly, our panel data allows us to analyze 

the dynamics of the innovation process. In other words, it enables us to find whether past 

innovation activities affect current innovation activities. Secondly, our study pioneers in 

studying the innovation input-output relation of the pharmaceutical sector in the 

Netherlands at a detailed and comprehensive level. Also, our intensive dataset provides us 

with information on whether the patents are applied at the US or European patent offices. 

This allows us to draw inferences on national and international patenting activities. 

 

The remainder of the paper proceeds as follows. Sections 2 provides a quick review of the 

literature dealing with R&D-patent relationship. Section 3 offers a brief overview of the 

methodological underpinnings of the empirical model. Section 4 describes the data used in 

our model. The empirical findings of different versions of the model explaining innovation 

activities are then discussed and contrasted in section 5. Finally, section 6 concludes. 

 

1.1 A brief description of EPO versus USPTO patents 

Patents and their citations are largely used to measure knowledge spillover from the R&D 

activities of the firms. But there lies prominent institutional differences in the process of 

governing the decision of granting a patent, or including a patent citation in a patent 

document. Although a few aspects of patent law has been harmonized internationally, there 

still remains a number of important differences between them. Since, in our analysis, we 

consider both EPO and USPTO patents, we try to take a closer look at the differences 

between them in this subsection.  
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The first difference between the EPO and USPTO patents are the priorities given when two 

candidates apply for a patent for the same invention. In case of EPO patents, the only thing 

that counts is the filing date. The first candidate to have filed his application will get the 

patent, even if the second candidate had come up with the invention first. But in the USA, 

a determination is made as to who invented it first. This usually involves examining 

laboratory logbooks, establishing dates for prototypes etc. So even if a person filed a patent 

later but is found to have invented earlier, he may be awarded a USPTO patent. 

The second prominent difference is that, US patent law requires that the inventor include 

the best way to practice the invention in the patent application, which bars him from 

keeping essential or advantageous aspect a secret. In contrary, European patent law has no 

such requirement. It only requires that at least one way of practicing the invention needs to 

be included in the application. But it does not focus on the fact whether the invention used 

is the best way or not. 

The difference in the grace period is the third important distinction between them. In case 

of EPO patents, if the invention has become publicly available ( like selling the invention, 

giving a lecture about it, or showing it to an investor without a non-disclosure agreement), 

the patent application will be rejected. It does not make any difference whether the person 

making it publicly available is the inventor, one of the inventors or an independent third 

party. But for USPTO patents, a one year grace period is provided, which implies that the 

inventor can freely publish his invention without losing the patent rights. 

Fourthly, the US patent law is a federal statute. Since a US patent is a property right which 

is enforceable in the entire territory of the USA, it allows patent holder to prevent anyone 

from making, using or selling in the USA the patented invention. In contrast, the European 

Patent Convention is a treaty signed by the twenty-seven European countries. As a granted 

European patent under the EPC confers to its owner the same right as a national patent in 

those EPC countries he elected in the application; a European patent once granted can only 

be annulled by separate proceedings in each elected country.  

The invention procedure is the fifth difference between the two systems. Although both 

EPO and USPTO requires that an invention be novel and requires an inventive step, EPO 

has a more strict interpretation of this term. A European patent application involves an 

inventive step if it solves a technical problem in a non-obvious way. 
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Also, there are relevant differences between citation practices in the USPTO and EPO. The 

US patent office follows the ‘duty of candor’ rule which imposes all applicants to disclose 

all the prior art they are aware of. Hence, many citations at the USPTO come directly from 

inventors and applicants and finally filtered by patent examiners. But the European Patent 

office follows no such rules. For the European patents, the patent examiners draft their 

report, trying to include all the technically relevant information within a minimum number 

of citations (Michel and Bettels, 2001). Hence, EPO patent citations are usually added by 

the examiners. Consequently, the analysis of diffusion and obsolescence of technological 

knowledge and knowledge spillovers may reveal different properties according to the used 

patent dataset. 

The final concomitant distinguishing feature between the two kinds of patents is the two-

part claims. European patent applications virtually always has a two-part claim. The latter 

features are those that constitute the invention. The former features are found in the prior 

art. If an application is filed with one-part claims, the foremost thing that happens is that 

the Examiner identifies the closest prior art and requests that the claim be delimited there 

from. On the contrary, a US patent application always have one-part claims. If there exists 

a two-part claim in a US patent, chances are that the patent is owned by a European firm. 

 

2 LITERATURE SURVEY 

Very few studies seek to analyze a relation between patents and R&D at the 

microeconomic level, inspite of the fact that, both the indicators are commonly used to 

analyze technical change. For measuring the relation between innovation expenditures and 

innovation output, the econometric models were developed by Griliches (1979) and 

Crepon et al. (1998). In the work of Griliches (1979), innovation performance relation was 

divided into three equations, where the second equation, that is, the knowledge production 

function, relates innovation inputs to innovation output. 

According to Klomp and Van Leeuwen (1999), firms that perform R&D on a continuous 

basis shows a significantly higher innovation output. L��f and Heshmati (2000), while 

focusing on the relation between expenditures on innovation input and its effect on 

innovation output, found that the most important source of knowledge comes from within 

the firm, whereas competitors are the most important external source of knowledge. 
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Mairesse and Mohnen (2005) found that innovation output is generally more sensitive to 

R&D in low-tech sectors than in high-tech sectors.  

A panel data analysis of knowledge production function was initiated by Pakes and 

Griliches (1980), who defined a theoretical model relating innovation input to innovation 

output. They derived a distributed lag regression, where the number of patents was 

regressed on current and five lags of R&D and firm individual effects. In their 

specification they ignored the discreteness of the patent data and used the ‘within’ 

estimator to account for individual effects. Pointing out the limitation of this study, 

Hausman et al. (1984) proposed a number of panel data models in order to estimate the 

patent-R&D relationship that took into account the discreteness of the patents, namely the 

fixed effect and the random effect Poisson and negative binomial regressions. 

Count data models are applied to the patent-R&D relationship by a number of researchers, 

which includes Bound et al. (1984), Hausman et al. (1984) and Crépon et al. (1996). The 

application of the CDM model can be found in a number of recent empirical studies that 

include Griffith et al.(2006), Mohnen et al.(2006), Polder et al. (2009), Hall et al. (2009) 

and Raymond et al. (2009). 

Though innovation is an inherently dynamic process between heterogeneous firms, most 

empirical studies conclude that there is no strong and clear cut evidence of persistence in 

innovation activities. Montalvo (1997) referred to possible simultaneity problems in the 

relationship between Patents and R&D. The previously employed count model were based 

on strict exogeneity of the expenditure in R&D with respect to patents. However, once a 

patent is granted, the firms may need to invest in R&D in order to transform the patent into 

a more commercial innovation for obtaining benefits. From this viewpoint R&D is used as 

a predetermined variable rather than being strictly exogenous. 

But Peters (2009) finds a strong persistence in innovation input, both in terms of R&D or 

non-R&D innovation expenditure, as well as in terms of new products or processes in the 

market. Also Peters (2007) infers that success breeds success, as the past share of 

innovative sales influences positively the probability of innovating in the future. Based on 

the work of Duguet and Monjon (2004), there exists a strong persistence of innovation at 

the firm level, provided that the theoretical modeling is based on the firm size. Both Roper 

and Dundas (2008) and Antonelli et al. (2010) confirmed on the persistence of innovation, 

focusing on the Irish Innovative Panel and  the Italian manufacturing firms respectively.  
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But, according to the earlier finding of Geroski et al. (1997),  larger firms innovate steadily 

over a period of time. But this happens till a threshold level, beyond which, firms fail to 

innovate persistently. Thus firm size plays a significant role on innovation persistence. 

However, as pointed out by Cefis and Orsenigo (2001), although persistence seems to 

increase with firm size, the relation is rather sector specific and country specific. Also, the 

absence of innovativeness can be due to turbulence in a sector, as measured by the Entry 

and Exit of firms ( Malerba and Orsenigo, 1996).  

Among the other determinants, firms size may affect the marginal costs of patent 

application. The cost per patent application for small firms are expected to be higher than 

large firms since most of the small firms neither have a specialized unit dealing with 

patents nor property rights. Also they do not have detailed prior information about the 

patent system. In addition, it is argued that small firms hesitate to apply for patents because 

of the large patent litigation cost (Cohen and Klepper, 1996) . But, in sharp contrast, 

empirical studies (like, Acs and Audretsch, 1991; and Pavitt et al., 1987),  have found that, 

small firms tend to innovate comparatively more.  

We estimate our model by using econometric methods that can deal with the different 

problems inherent in the model and related to the nature of the data. Most studies on 

innovation are potentially affected by selectivity biases. In case of patent data, relatively 

few firms have patents and hence, analyses limited to them may be biased. As stressed by 

Mairesse and Mohnen (2010), the R&D-innovation framework has been extended in various 

directions as the use of innovation expenditures rather than the use of R&D expenditures (Janz et 

al., 2004, and Lööf and Heshmati, 2006), by including a demand shifting effect of innovation 

output (Klomp and van Leeuwen, 2006), making a distinction between new-to-firm versus new-to-

market innovations (Duguet, 2006), and  using other determinants along with R&D as innovation 

inputs (physical capital investment for process innovation in Parisi et al., 2006, and Hall et al., 

2009, and ICT in Polder et al., 2009). 

 

3 EMPIRICAL IMPLEMENTATION 

We focus on adopting statistical models of counts (non-negative integers) in the context of 

panel data and using them to analyze the relationship between patents and R&D 

expenditures. Count outcomes are often characterized by a large proportion of zeroes. 

Although linear and logistic models have often been used to analyze count outcomes, the 
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resulting estimates are likely to be inefficient, inconsistent and biased. The model used in 

this paper is adapted to a panel data framework, where R&D availability is not necessarily 

a prerequisite. Examples of empirical studies that uses similar R&D selection criterion, in a 

cross-sectional dimension, are given by Griffith et al. (2006), Klomp and Van Leeuwen 

(2006) and Hall et al. (2009). The patent count data is fully observed in our sample and 

consists of patents from United States (USPTO= U.S. Patent and Trademark office) and 

Europe (EPO=European Patent Office). Our model is an application and generalization of 

the Poisson distribution to allow for independent variables, persistent individuals (fixed 

and random effects) and noise or randomness in the Poisson probability function. 

Since patent data is discrete, it motivates us to use the count model (Nesta and Saviotti, 

2005). But since many firms have zero patent counts, we estimate the innovation output 

using a zero inflated count model. The zero inflated count model allows for the unobserved 

heterogeneity by means of random effects. 

3.1 The Patent Equation 

Our empirical model explains the innovation output, which is measured by the number of 

patents filed in a given year, in terms of R&D- patent relationship. We use a count model 

because of the discreteness of patent data (Nesta and Saviotti, 2005). Due to problems in 

R&D expenditures or uncertainty in the market, firms can decide not to patent. Hence, it is 

to be noted that, there are many firms in our data which are never granted any patent for 

the entire sample period or consequently, there are several zero patent counts in our patent 

data. To take this excess of zeroes into account, we estimate the patent equation using a 

zero- inflated count model. Zero-inflated count model has been used in the works of Hall 

(2000) and Min and Agresti (2005), allowing for unobserved heterogeneity by means of 

random effects. Let,  

(1)                                                                                                  !/)exp(),(0 yyP y
ititit λλλ −≡

 

where itλ  is the Poisson distribution parameter and ,...}2,1,0{∈y . The random zero 

inflated Poisson model (ZIP) can be written as, 

(2)                                                                ),()0,()1()Pr( 00 itititititit yPpyPpyPAT λ+−==
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where itPAT  is the number of patents for firm i at time t, itp−1  represents the probability 

of extra zeroes. We model itλln  as, 

(3)                                                                                            )&(ln 1
'
33 ititiit xDRa βγλ ++=

 

where ia3  is a time-invariant unobserved firm effect and, itx1  is the vector of additional 

independent variables that includes the log of the number of employees (ite ), age of the 

firms ( )ita , time dummies ( kα ), entry dummies( )kβ and exit dummies( )kγ . 

Firm size measured by the number of employees reflects access to better financing 

(Mairesse and Mohnen, 2002). The size of firms is log- transformed in the estimation. We 

also introduce the variable age, which is likely to shed light on the dynamics of the 

industries. The technology and products of industries evolve according to the innovations 

that are introduced as entrant, surviving and incumbent firms. Papers like Audretsch (1995) 

and Klepper (1996) provide theoretical insights into the nature of this dynamics. Entry and 

exit dummies are incorporated in order to analyze how survival mechanisms affect 

heterogeneous mechanisms of innovation and growth. 

In case of firm’s unobserved itDR& , we consider its predicted values. The selection 

criterion for the panel data is such that we use data on firms that report R&D and compute 

the predicted R&D for those firms which do not report their R&D effort. We then calculate 

the effect of R&D on patents for all firms. In this framework we assume that the effect of 

no-R&D reporting firm is the same as R&D reporting firms. Since we distinguish between 

zero R&D and non-reporting R&D, we also assume that some non-innovating firms maybe 

R&D performers. 

We use the zero-inflated negative binomial (ZINB) distribution, where itPAT  can be 

modeled as follows: 
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where (.)Γ denotes the gamma function. This model is particularly suited for overdispersed 

data. It reduces to ZIP when �=0. 
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In our random effect zero inflated count models, the random effects are assumed to be 

standard normal variables multiplied by standard normal probability density function that 

enters the log-likelihood function. The log likelihood for the zero inflated count model 

with random effects is given by, 

(5)                                                     )}]&exp(,{log[            

)1log()1()log()(loglog
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where φ  is the standard normal probability density function and, itz  is an indicator 

variable which is equal to 1 if 0>itPAT , and 0 if itPAT =0. 

In our analysis we test the statistical properties of various count data models and adopt a 

zero-inflated negative binomial model that takes into account the unobserved heterogeneity 

with respect to the propensity to patent and the ability of firms to generate inventions 

(Cincera, 1997). 

3.2  Extension to Dynamics 

In our analysis, we extend the model to a dynamic framework. The richness of our panel 

data enables us to analyze the dynamics of the innovation process. With specific reference 

to Netherlands, existing studies that have investigated the dynamics of the relationship 

between R&D and patenting activity include Van Leeuwen (2002) and Raymond et al. 

(2009). Both studies confirm persistence of innovation. Firms may innovate persistently 

for a number of reasons. In the “Success breeds Success” hypothesis firms become more 

prominent because of innovation due to broader technological opportunities. Consequently 

accumulation of knowledge would induce state dependence invention flows and hence, 

persistence of innovation. Another theoretical reasoning considers the sunk costs in R&D 

investments as a predominant source for steady innovation as they create entry barriers and 

hence, engagements to continue innovation.  

In our model, we analyze whether firms exhibit persistence in innovation by using lagged 

patents and patent dummies for the past years, within the concerned time frame of our 

model. Using patent lags and patent dummies might throw some light on individual firm in 

their propensity to patent. The requirement to allow for such individual effects eliminates 

much of the variance in the available short time series framework.  
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Hence, our basic model (eq. 3) gets transformed to: 

(6)              )....&(ln 211
'
33 PATdummyPATPATPATxDRa nitititititiit +++++++= −−−βγλ  

where, ) , ,( 21 nititit PATPATPAT −−−  denotes the lagged patents till year n (in our model 

n=10), and PATdummy  denotes the patent dummy. Therefore, in our model, we 

introduce the fact that, the propensity to patent in the current year depends on the past 

history of patenting for the individual firms. Additionally, we measure persistence using a 

lagged patent dummy, where each firms who has patented atleast once in their past period 

is assigned a value of 1, and zero otherwise.  

 

4 DATA DESCRIPTION 

Our study is based on an unbalanced panel data set for the period 1996-2006. We obtained 

673 pharmaceutical firms that are extracted from the Statistics on Financial Enterprises 

provided by the Central Bureau of Statistics (CBS) and the REACH database 

(Manufacturing of Pharmaceutical products and Pharmaceutical preparations, NACE Rev.2 

Code 21).  

The ownership criteria are essential in the construction of our sample. Since firms register 

patents or report R&D expenditures under different names, we used the Algemeen 

Bedrijven Register (ABR=general business register) data, issued yearly by Statistics 

Netherlands on firms' ownership structure, to find the names and the direct ownership 

(expressed in percentage) of all their subsidiaries, holding units, and their shareholders. We 

manually assigned a Chamber of Commerce (KvK) code to each firm. Each KvK code was 

then electronically matched with a Statistics Netherlands internal code in order to obtain 

the entire ownership structure for each of the firms. By this selection, the number of 

pharmaceutical firms gets reduced to 520. In the sample of firms we define the possible 

(not necessarily ultimate) parent firm, which is necessarily located in the Netherlands and 

their data on input and output variables is available. To identify the (possible) ultimate 

parent, CBS takes into consideration a direct and indirect ownership of over 50%. It is 

noted that a considerable number of subsidiaries (daughters) were completely owned by a 

parent. 
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For each of the 520 firms, we looked at their entire ownership structure, including all 

possible subsidiaries (through an extensive manual search from the ABR), and 

subsequently matching them with patent counts from the patent database that has been 

made available by the Dutch Patent Office (Octrooicentrum, Netherlands). The patent data 

set from the Dutch patent office gives us information about indicators that include (besides 

other informations), the application number, the patent owner (name of the firm), patent 

title, name of the inventor, publication year, and location. The database comprises of all 

patents from the United States (issued by the USPTO) and Europe (issued by the EPO). 

The usefulness of this database is that, it eliminates any double counting of USPTO and 

EPO patents. All the respective firms (mother & daughters) from the ownership structure 

are matched manually by name with the patent database. 

Also, we used a complementary database of the total population of European patents 

(issued by the EPO) for the period 2000-2006, that was partially made available from 

Statistics Netherlands. With this complementary database, we were able to double check 

the EPO patent counts for our firms with those that we obtained using the first database 

source. To calculate the number of forward citations, we consulted the PATSTAT 

database.   

The innovative performance of the firms is indicated by patent counts and citation- 

weighted patent in our paper. In other words, patent act as the innovation output indicator 

in the innovation intensive Dutch Pharmaceutical sector. Due to the richness of our panel 

data, it was possible to perform analysis on not only the overall patents, but also on EPO 

and USPTO patents individually. As depicted in figure 1A, we find that there is a trend of 

gradual increase in the EPO patents over the concerned time period. 
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                              Fig 1A:  Patent Counts for 1996-2006 

                

It is evident from the diagram that the highest number of patents is in the year 2000, taking 

a downward trend for the next four years. But again after 2004, there is an increase in the 

number of patents for a year, until it takes a downturn in 2005. The EPO Patents counts 

show similar trends, due to the fact that, most of the overall patents constitutes the EPO 

patents. For the USPTO Patents, there is a gradual decline after 1999. 

                                 Fig 1B: Citation Counts for 1996- 2006 
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Figure 1B illustrates the trends in citation counts. The overall citation counts reaches its 

peak in 1997, after which it shows a downward trend in general.  

The REACH database provides detailed financial data, ownership structure as well as 

information on their R&D expenditures for the TOP5000 largest Dutch firms (>100 

employees). However, we find that in the database, only a small proportion of firms 

publish their R&D expenditures. This relates to the fact that for accounting purposes, many 

firms combine their R&D expenditure with other related costs (i.e., general and 

administrative expenses) under the heading intangible fixed assets or operational costs. The 

Dutch law that obligates firms to publish financial details (balance, profit and loss 

accounts, annual reports, ownership information), including their R&D expenditures, is 

applied to the TOP5000 firms. We used two complementary R&D data sources. We extract 

R&D data from the CIS waves (CIS2, CIS2.5, CIS3, CIS3.5 and CIS4) and R&D surveys 

that are collected by Statistics Netherlands. The R&D surveys report R&D expenditures in 

the odd years while each of the CIS waves measures R&D expenditures in the even years 

of our sample period. From the surveys we complemented R&D data for the 520 

Pharmaceutical firms. 

In the CDM model, R&D data availability is taken as a starting point, merely because the 

CIS data classifies innovating firms as those that generate both R&D and output 

innovation. Our approach allows us to exploit differences between innovators and non-

innovators, both at the level of R&D expenditure and patent activities. A descriptive 

Statistics on R&D and patent behavior of sample firms is reported in Table 1. Our 

innovation data consists of 520 firms for every year during the period 1996-2006, after 

selection (which is based on the ownership structure of the firm). Among the 520 firms, 

191 firms reported R&D. Similar statistics is carried out for all patenting firms, which 

includes the firms having EPO and(/or) USPTO patents.                         

                                   Table 1: Innovation Data Sample 
  R&D Reported R&D Not Reported Total 
All Firms 191 329 520 
Patenting Firms 44 28 72 
Only EPO Firms 19 15 34 
Only USPTO Firms 2 3 5 
Both EPO and USPTO Firms 23 10 33 
USPTO Patent Counts 613 188 801 
EPO Patent Counts 3192 539 3731 



������ � � � �

�

 

It is evident from the table that, the total number of patents over the period 1996-2006 is 

4532, with 3731 EPO patents and only 801 USPTO patents. Hence, an overwhelming 

majority of the Dutch patenting firms have used the European patent office, and not the 

patent office in US. 

We also find that the total number of firms that patents is only 72 out of the 520 firms, 

wherein 44 patenting firms report R&D and 28 patenting firms does not report R&D. 

Therefore, a large group of pharmaceutical firms are not engaged in patent activities. Also, 

a majority of these firms can also be classified as non-R&D firms. As pointed by Licht and 

Zoz (2000), a large share of patents is applied by only a small number of firms and 

therefore the distribution of patent application among firms is highly skewed. Similarly, 

the number of pharmaceutical firms that reports R&D are much lesser than the number 

firms that does not report R&D.  

It is surprising to note that, firms with patents sometimes do not report R&D. But this 

ambiguity can occur due to certain criterion followed while constructing the data file. 

Firstly companies sometimes report only the “material” R&D expenditure, and so the CIS 

waves or R&D survey may report R&D as zero (but not necessarily) if R&D expenditure is 

non-material. Alternatively, companies may say nothing about their R&D and keep their 

R&D expenditure as confidential. In such cases, R&D is reported as ‘not available’. It is 

also likely that companies reported as “not available”  include some which are randomly 

missing, that is, a company performs material R&D, but for some reason Statistics 

Netherlands could not accrue the data for a particular year or a given period. 

Besides, R&D, the other explanatory variables included in our model are size of firms 

(measured by the number of employees), age of the firms and entry-exit barriers. They are 

extracted from the CBS database. We test for the effect of firm size on the propensity to 

patent by including the logarithm of the number of employees in our model. For estimation 

purpose, a log transformation has been used in order to allow for the skewness of the 

distribution. As the competitive conduct of firms changes prominently with the increase in 

the number of incumbents or with the exit of existing firms, we consider the entry and exit 

dummy. For those firms which has entered the pharmaceutical market within the 

concerned period is assigned 1 as the entry dummy and 0 otherwise. Similarly the exit 

dummy is calculated. The age of firms is measured as the difference between the entry year 
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and the exit year of each of the firms for the successive years. We incorporate the age of 

firms as one of the control variables, owing to the fact that the life span of firms play an 

important role in determining the amount of its innovation output. 

Innovation persistence is an important determinant for concentration of innovation 

activities of firms. We tried to capture the dynamics of the innovation process by 

incorporating lagged patents and lagged patent dummies as the explanatory variables. 

Patent lag is denoted by the number of patent for each firms in the past years. We further 

use a lagged patent dummy, which is 1 if a firm patents in the past years and zero 

otherwise. It is to be noted, in this context, that both firm size and entry-exit plays a major 

role in the innovation persistence of firms. Various empirical studies like Geroski et al. 

(1997) and; Duguet and Monjon (2004) stresses on the fact that, innovation persistence is 

influenced by size of firms. In addition, competitive turbulence, as defined by the entry-

exit or survival of the firms, is significant for dynamics in innovation (e.g. Antonelli et al., 

2010 and; Malerba and Orsenigo, 1996). 

Table 2 represents the summary statistics of the variables used in our model.    

                                                Table 2: Descriptive Statistics               

       <---------------------- Quantiles  ---------------> 

Variable Obs Mean Std.Dev.  Min 0.25 Mdn 0.75 Max 

Log (R&D per 
employee) 

792 1.6 1.72 0 0.07 1.23 2.37 10.52 

Patent Counts 5720 0.79 9.3 0 0 0 0 210 

Citation-weighted 
Patents 

5718 1.09 15.51 0 0 0 0 564 

Log (Employment) 3880 2.87 2.46 0.69 0.69 2.08 4.2 10.19 

Age 5676 9.33 11.9 0 0 3 16 39 

Entry 5676 0.45 0.5 0 0 0 1 1 

Exit 5676 0.46 0.5 0 0 0 1 1 
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5 EMPIRICAL ESTIMATION 

5.1 Using simple patent counts as the dependent variable: 

Our basic model incorporates the R&D intensity variable, which is the corresponding 

elasticity of the number of patents with respect to R&D, taken as its predicted value from 

the preferred Tobit II equation. The other independent variable that we consider in the 

basic model is the log of the number of employees (as a proxy for the size of firms). We 

further use age of the firms and entry-exit as additional regressors. Finally, dynamics is 

incorporated in the model by using a lagged patent dummy and lagged patent counts. 

An important feature in the panel data application is the unobserved heterogeneity or 

individual fixed effects. We use maximum likelihood (ML) technique to estimate the 

model, following the approach recently proposed by Wooldridge (2005) for handling the 

individual effects. In this case, the distribution of the unobserved effects (ia1 ) are modeled 

as follows: ,)&( 111
*
010101 iiii xDfittedRa ξδδα +′++= where 10α  and 20α  are constants, 

1ix  is the vector which includes the time averages of the variables ( ),, ′ititit lse , 

*
0)&( iDfittedR  and 0iz  are the initial values, 10δ  and ′

1δ are the corresponding 

coefficients (vectors) to be estimated, and i1ξ  are assumed to be independent, following 

normal distributions ),0(~| 2
111 ξσξ Nxii . 

We develop the model assuming random effects and excluding the initial conditions in our 

next estimation stage. However, full random effects is considered in the final estimations. 

In this section, we use simple patent counts (overall, only EPO and only USPTO) as our 

dependent variable. To overcome the problem of excess zeroes, we have used the zero 

inflated negative binomial model. A Vuong test (Vuong, 1989) for each of the estimations, 

in order to discriminate between negative binomial (NB) and zero-inflated negative 

binomial (ZINB) models is applied. This test corrects for the complication that ZINB 

reduces to NB only at the boundary of the parameter space.  

Table 3 provides the estimates of the patent equation. From table 3, we can find that model 

1 and 2, does not have random effects and they reflect the basic models. The next five 

models allow for unobserved heterogeneity by means of random effects. We incorporate 
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dynamics from regression model 4 onwards. Same regression techniques are used in the 

subsequent estimations with different regressands (as reported in table 4, 5 and 6).  

It is observed that R&D intensity (as the fitted value) has positive and significant effect in 

most of the models (except Model 4 and 5). Hence, it turns out to be an important 

determinant in generating new knowledge. It is to be noted that, in case of Model 4 and 5, 

we have used the lagged patents as an additional regressor. Therefore, the insignificant 

impact of R&D intensity can be due to the problem of multicollinearity.  

Concerning the role played by the size of firms, it is evident that larger firms have more 

tendency to patent. This confirms the empirical works of Cohen and Klepper (1996). 

Innovation involves significant start-up cost and economies of scope and scale. Hence, 

comparatively, large firms have a comparative edge over smaller firms. But the effect is 

significant when we do not allow for the unobserved heterogeneity. 

Surprisingly, our results show the effect of age on patenting to be negative and significant 

in our models. As firm ages and establishes itself, other firms become more informed about 

the ability of the firm to succeed in innovation. Hence, the adverse effect of capital market 

imperfection increases over the larger firms. Therefore, we can conclude that younger 

firms are more innovation prone than their larger established counterparts. But the entry-

exit dummy do not provide a conclusive result, probably due to the fact that the 11 years 

period of the firms’ entry and exit into the market is too small to get a consolidated impact 

of them on the innovation output.        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

          �� ��
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                     Table 3: ML-regression results for the patent equation using patent counts 
                

Dependent 
Variable 

Patent 
Counts 

Patent 
Counts 

Patent 
Counts 

Patent 
Counts 

Patent 
Counts 

Patent 
Counts 

Patent 
Counts 

  
ZINB 
Model 1 

ZINB 
Model 2 

ZINB 
Model 3 

ZINB 
Model 4 

ZINB 
Model 5 

ZINB 
Model 6 

ZINB 
Model 7 

Log(R&D per 
employee) 0.26*** 0.356*** 0.163** 0.097 0.149*** 0.07 0.178*** 
  [0.085] [0.081] [0.069] [0.061] [0.053] [0.060] [0.059] 
Log(Employment) 0.494*** 0.95*** 0.199* 0.139 0.012 0.131 0.155* 

[0.047] [0.061] [0.113] [0.091] [0.098] [0.089] [0.089] 
Age   -0.124*** -0.111*** -0.08*** -0.025* -0.069*** -0.139*** 
    [0.014] [0.018] [0.017] [0.013] [0.016] [0.018] 
Entry   -0.352 -0.571 0.018 -0.991*** 0.179 -1.633*** 
    [0.389] [0.402] [0.373] [0.342] [0.359] [0.367] 
Exit   -0.358 -0.631** 0.078 -0.934*** -0.153 0.461* 
    [0.239] [0.278] [0.283] [0.185] [0.281] [0.265] 
Lag(Patent)        0.125***   0.192***   
        [0.022]   [0.027]   
Dummy(Patent)         -1.072***   2.637*** 
          [0.242]   [0.425] 
Intercept -2.63*** -3.344*** -3.177*** -4.162*** 1.406*** -4.242*** -3.462*** 
  [0.612] [0.602] [0.648] [0.650] [0.538] [0.622] [0.610] 
Initial(Patent)           -0.086*** 0.029*** 
            [0.015] [0.007] 
Random Effect NO NO YES YES YES YES YES 
Log likelihood -1583.740 -1546.390 -1511.891 -1394.779 -1345.259 -1381.692 -1458.707 
N Observations 3868 3868 3868 3808 3868 3808 3868 
Nonzero 
observations 274 274 274 262 274 262 274 

Zero observations 3594 3594 3594 3546 3594 3546 3594 

*** denotes 1% significance level, **denotes 5% significance level and *denotes 10% significance level 
 

The positive and significant values for the lagged patents confirms persistence of 

innovation among firms. This proves that firms that patents in the past years have a strong 

tendency to patent in the following years, confirming the past literatures on the persistence 

of innovation. The lagged patent dummy appears to be negative and significant when we 

do not incorporate the initial conditions (in Model 5). With the incorporation of the initial 

condition in Model 7, the patent dummy appears to be positive and significant. Hence, 

Model 7 is our preferred model.  
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In table 4, we perform the same estimations as Model 3. But this time, we consider the 

EPO patent counts and the USPTO patent counts as the regressands. Model 6 and 7 are our 

reference model, where we allow for full random effect, by including both averages and 

initial conditions. Furthermore, dynamics is included in the last two models. Hence, for the 

estimations with the USPTO counts, we consider only model 6 and 7, for a comparative 

analysis with the EPO patents. The estimation results with EPO patents are found to be 

similar to that of Table 3. R&D intensity is positive and significant when EPO counts are 

used as the dependent variable. But, in case of USPTO counts, the coefficient for R&D 

intensity is negative and insignificant. A possible explanation is, very few firms in 

Netherlands apply for patents in US. Consequently, the number of patents from the US 

patent office is significantly less than the EPO patents, and hence do not capture the true 

picture of innovation output of the firms. Similarly, we find that, for firm size, the results 

using the USPTO patents provides a negative and insignificant result. But with the EPO 

patents, it is reconfirmed that, ceteris paribus, larger and well-established firms have a 

relative innovative advantage over the smaller firms. Age appears to be negative steadily 

and also significant in most of the cases, with or without allowing for the unobserved 

heterogeneity. But the results for entry-exit dummy appears to be inconclusive. 

With the extension of our model to a dynamic framework, we find a positive and 

significant effect of patent lag, thereby proving again the concept of persistence of 

innovation at the micro level. Further, lagged patent dummy appears to be positive and 

significant for both EPO and USPTO patents, when initial conditions are applied. This 

confirms the results of  Van Leeuwen (2002) and Raymond et al. (2009).  
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                    Table 4: ML-regression results for the patent equation using EPO and USPTO patent counts 

Dependent Variable 

EPO 
Patent 
Counts 

EPO 
Patent 
Counts 

EPO 
Patent 
Counts 

EPO 
Patent 
Counts 

EPO 
Patent 
Counts 

EPO 
Patent 
Counts 

EPO 
Patent 
Counts 

USPTO 
Patent 
Counts 

USPTO 
Patent 
Counts 

  
ZINB 
Model 1 

ZINB 
Model 2 

ZINB 
Model 3 

ZINB 
Model 4 

ZINB 
Model 5 

ZINB 
Model 6 

ZINB 
Model 7 

ZINB 
Model 6 

ZINB 
Model 7 

Log(R&D per 
employee) 0.276*** 0.34*** 0.185*** 0.099 0.157*** 0.116* 0.183*** -0.165 -0.082 
  [0.088] [0.081] [0.069] [0.114] [0.055] [0.062] [0.057] [0.113] [0.111] 
Log(Employment) 0.486*** 0.984*** 0.251** 0.063 0.044 0.216** 0.169* -0.192 -0.218 

[0.047] [0.065] [0.117] [0.110] [0.102] [0.093] [0.092] [0.163] [0.159] 
Age 

  -0.129*** -0.108*** -0.087*** -0.02 -0.064*** -0.129*** -0.117*** -0.204*** 
    [0.014] [0.018] [0.022] [0.013] [0.017] [0.019] [0.024] [0.033] 
Entry   -0.411 -0.684 -1.11** -1.05*** 0.06 -1.945*** 0.75 -1.665** 

  [0.409] [0.426] [0.530] [0.371] [0.361] [0.392] [0.542] [0.774] 
Exit   -0.388 -0.658** 0.685 -0.965*** -0.044 0.578** -0.28 0.236 

  [0.25] [0.282] [0.501] [0.193] [0.298] [0.255] [0.390] [0.474] 
Lag(Patent)       0.069**   0.179***   0.225***   
        [0.034]   [0.028]   [0.034]   
Dummy(Patent)         -0.917***   2.444***   1.809** 
          [0.262]   [0.419]   [0.743] 
Intercept -2.543*** -3.434*** -3.186*** -2.847* 1.266** -4.332*** -3.046*** -7.182*** -2.193* 
  [0.621] [0.63] [0.67] [1.642] [[0.571] [0.656] [0.639] [0.883] [1.169] 
Initial(Patent)           -0.078*** 0.029*** -0.149*** 0.029*** 
            [0.015] [0.005] [0.024] [0.006] 
Random Effect NO NO YES YES YES YES YES YES YES 
Log likelihood -1445.212 -1406.445 -1377.076 -1264.367 -1249.727 -1250.940 -1320.254 -534.589 -599.090 
N Observations 3867 3867 3867 3807 3867 3807 3867 3808 3868 
Nonzero 
observations 255 255 255 243 255 243 255 103 108 
Zero observations 3612 3612 3612 3564 3612 3564 3612 3705 3760 

*** denotes 1% significance level, **denotes 5% significance level and *denotes 10% significance level 
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5.1 Using citation weighted patent counts as the dependent variable: 

The patent quality is proxied by the forward citation counts on each of the patents (based 

on empirical studies like Hall et al., 2005). In this section, we focus and discuss on the 

effect of R&D intensity and other determinants on the citation-weighted patents. The 

results for overall citation weighted patents are enumerated in table 5.  

 

Table 5: ML-regression results for the patent equation using citation-weighted patents 
            �� ��

Dependent Variable 

Forward 
Citation 
Counts 

Forward 
Citation 
Counts 

Forward 
Citation 
Counts 

Forward 
Citation 
Counts 

Forward 
Citation 
Counts 

Forward 
Citation 
Counts 

Forward 
Citation 
Counts 

  
ZINB 
Model 1 

ZINB 
Model 2 

ZINB 
Model 3 

ZINB 
Model 4 

ZINB 
Model 5 

ZINB 
Model 6 

ZINB 
Model 7 

Log(R&D per 
employee) 0.437*** 0.276*** 0.076 -0.077 0.151* -0.097 0.063 
  [0.151] [0.099] [0.086] [0.073] [0.086] [0.071] [0.076] 
Log(Employment) 0.307*** 0.765*** 0.049 -0.137 0.259* -0.158 0.208* 

[0.074] [0.097] [0.150] [0.108] [0.135] [0.110] [0.126] 
Age   -0.133*** -0.077** -0.031 -0.101 -0.029 -0.114*** 
    [0.023] [0.030] [0.021] [0.022] [0.02] [0.022] 
Entry   -0.865* -1.348*** -0.364 -1.444*** -0.269 -1.597*** 

  [0.499] [0.510] [0.454] [0.433] [0.455] [0.454] 
Exit   0.327 -0.454 -0.228 -0.827** -0.308 -0.523 

  [0.328] [0.378] [0.348] [0.368] [0.350] [0.398] 
Lag(Patent)       0.129***   0.183***   
        [0.026]   [0.033]   
Dummy(Patent)         3.198***   2.699*** 
          [0.600]   [0.587] 
Intercept -2.432*** -2.549*** -1.847* -3.871*** -4.361*** -3.898*** -3.398*** 
  [0.765] [0.798] [1.106] [0.616] [0.767] [0.603] [0.870] 
Initial(Patent)           -0.094*** 0.024** 
            [0.019] [0.01] 
Random Effect NO NO YES YES YES YES YES 
Log likelihood -1530.424 -1509.203 -1481.990 -1381.926 -1459.823 -1373.352 -1451.056 
N Observations 3866 3866 3866 3806 3866 3806 3866 
Nonzero 
observations 240 240 240 229 240 229 240 

Zero observations 3626 3626 3626 3577 3626 3577 3626 

*** denotes 1% significance level, **denotes 5% significance level and *denotes 10% significance level 
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A positive and significant relation is observed between R&D intensity and patent citation 

when there is no random effect. But by allowing for random effect, we find an insignificant 

relation in most of the regression models. Similar results are observed for the coefficients 

obtained for the size of firms. However, the coefficients for both the independent variables 

are mostly positive, confirming a positive effect on citation-weighted patents. Coefficient 

for age is systematically negative, confirming our previous results. For the entry dummy, it 

is observed that, the coefficients are negative, though not always significant. Hence, the 

results suggests that more entrants causes lesser innovation output. Also with the exit 

dummy, we observe a negative relation in most of the cases. Entry-Exit causes turbulence 

in the market, which might affect the propensity to innovate, or, the quality of the 

innovation. 

With the incorporation of dynamics, the regression results for both lagged patents and 

patent dummies are positive and significant. This again proves persistence in the 

innovation process. The intercepts are significant and negative for all the regression results.  

Finally, we perform regression on the EPO and USPTO citation- weighted patents. The 

results are summarized in Table 6. Similar to the results obtained in table 5 for the overall 

patents, it is found that R&D intensity is positive and significant when random effects is 

not allowed. But with the estimation for USPTO citation- weighted patents, it is found that 

the estimation coefficients are significant and negative. Also, in case of the size of firms, 

the coefficients are positive and significant for the EPO citation counts for model 1 and 2. 

But when we allow for unobserved heterogeneity among the firms, the results are 

inconsistent for both EPO and USPTO Citations. A negative and significant impact of age 

on innovation performance again testifies that young firms are more enterprising and 

innovation prone. The coefficient for entry dummy is negative and significant in most of   

the regression results. However, the effect of entry dummy seems inconclusive. Again, 

innovation persistence is confirmed by positive and highly significant coefficients for 

lagged patents and lagged patent dummies for all the regression results, using EPO as well 

as USPTO citation- weighted patents. 
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          Table 6: ML-regression results for the patent equation using EPO  and USPTO citation- weighted patents 
            �� �� �� ��

Dependent Variable 

Forward 
EPO 
Citation 
Counts 

Forward 
EPO 
Citation 
Counts 

Forward 
EPO 
Citation 
Counts 

Forward 
EPO 
Citation 
Counts 

Forward 
EPO 
Citation 
Counts 

Forward 
EPO 
Citation 
Counts 

Forward 
EPO 
Citation 
Counts 

Forward 
USPTO 
Citation 
Counts 

Forward 
USPTO 
Citation 
Counts 

  
ZINB 
Model 1 

ZINB 
Model 2 

ZINB 
Model 3 

ZINB 
Model 4 

ZINB 
Model 5 

ZINB 
Model 6 

ZINB 
Model 7 

ZINB 
Model 6 

ZINB 
Model 7 

Log(R&D per 
employee) 0.495*** 0.318*** 0.1 -0.074 0.158* -0.067 0.042 -0.374*** -0.234* 

[0.149] [0.113] [0.079] [0.070] [0.081] [0.071] [0.075] [0.145] [0.136] 
Log(Employment) 0.261*** 0.791*** -0.085 -0.113 0.171 -0.189 0.056 -0.15 -0.122 

[0.070] [0.100] [0.152] [0.137] [0.141] [0.126] [0.170] [0.183] [0.21] 
Age   -0.137*** -0.051** -0.054** -0.0816*** -0.009 -0.092*** -0.144*** -0.248*** 
   [0.023] [0.022] [0.026] [0.0215] [0.020] [0.024] [0.027] [0.037] 
Entry   -0.507 -1.573*** -1.147** -1.701*** -0.144 -1.988*** 0.64 -1.271 

  [0.543] [0.511] [0.535] [0.479] [0.474] [0.536] [0.561] [0.848] 
Exit   0.282 -0.213 0.039 -0.791** -0.061 -0.304 -0.694 0.296 

  [0.355] [0.334] [0.388] [0.368] [0.36] [0.410] [0.448] [0.569] 
Lag(Patent)       0.034***   0.15***   0.313***   
       [0.012]   [0.033]   [0.046]   
Dummy(Patent)         3.231***   2.441***   1.466* 
         [0.589]   [0.630]   [0.846] 
Intercept -2.202*** -2.856*** -1.612* -1.532* -4.307*** -4.104*** -2.809*** -7.66*** -1.242 

[0.734] [0.874] [0.968] [0.937] [0.763] [0.633] [1.03] [0.998] [1.472] 
Initial(Patent)           -0.075*** 0.024*** -0.255*** 0.03*** 
           [0.019] [0.008] [0.043] [0.008] 
Random Effect NO NO YES YES YES YES YES YES YES 

Log likelihood -1355.630 -1333.148 -1301.583 
-

1212.039 -1280.895 -1204.083 -1269.988 -606.887 -668.704 
N Observations 3868 3868 3868 3808 3868 3808 3868 3808 3868 
Nonzero observations 219 219 219 208 219 208 219 101 105 
Zero observations 3649 3649 3649 3600 3649 3600 3649 3707 3763 

*** denotes 1% significance level, **denotes 5% significance level and *denotes 10% significance level     



������ � � � �

�

6 CONCLUSION 

Based on the empirical study, this paper revisits at the firm-level the effect of R&D 

intensity and other determinants on the innovation output of the firms for the Dutch 

Pharmaceutical industry. Considering the excess zero values for patents in our dataset, we 

performed count data analysis, using a zero- inflated negative binomial model.  

From our analysis, R&D investment appears to have paid off when we consider simple 

patent counts as our innovation output indicator. However the effect appears to be 

insignificant when unobserved heterogeneity for each firm is applied for citation-weighted 

patents.  

Further our analysis suggests that, large firms are more innovation intensive than smaller 

firms. However, the extent to which this occurs is decreasing in firm age. Large firms have 

more access to capital stock to engage in innovation. But at the same time, young firms are 

more enterprising. Our argument is that, the skill for patenting is unknown to the outsiders 

for young firms. But it is gradually revealed as the firm ages. The phenomenon is more 

intense when simple patent counts are used as our innovation output indicator. Moreover, 

the turbulence in innovation in the pharmaceutical market caused by the entry-exit and 

survival of firms might hinder the amount of patenting by the firms.  

Finally, with the extension of our empirical model to a dynamic panel framework, the 

analysis that proceeded confirms the existence of a highly significant persistence in  

innovation. This characteristics of the Dutch Pharmaceutical firms are found to be 

consistent and strong in case of patents as well as citation-weighted patents. 

Our analysis is done indepth, considering the regression results for both EPO and USPTO 

patents and citation-weighted patents individually, along with overall patents counts and 

their citation weightage. But the inconclusive results for major determinants, except for 

persistence, when citation- weighted patents are used allowing for random effects, needs to 

be further investigated. 
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