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Abstract
In the late 1960s Stanley Milgram conducted an experiment that is still highly topical, especially in the field of network
research. The specific concern of his research project was to understand how communication processes work in social
systems (Uzzi & Spiro, 2005, p. 450). He sent letters to a randomly chosen set of participants who were scattered
throughout the United States. Written instructions were included asking the recipients to pass the letter forward to a
specified target individual (Newman, 2010, p. 55). It turned out that almost one third of the letters sent reached even far
targets after roughly six distinct steps on average. Milgram?s (1967) groundbreaking experiment showed that people in
the US are separated by more or less six degrees of separation.

Milgram?s findings are highly relevant for innovation researchers. An in-depth understanding of the overall innovation
network structure is important for at least three reasons. Firstly, there are good reasons to assume that network
topologies affect the exchange of information, ideas and knowledge in multiple ways. Second, systemic level studies are
still scant but highly relevant for understanding the collective nature of innovation processes. Finally, systemic level
studies have some straightforward implications, not only for firms but also for policy makers, by providing an informative
basis for the evaluation of cooperation-related innovation policies at the national and supra-national level.

Against the backdrop of these arguments, it is all the more astonishing that small-world network properties have been
widely neglected in the field of interorganizational alliance and network research over the past decades (for a review
see, Uzzi et al. (2007). The overall goal of this study is to contribute to a deeper understanding of the small-world
phenomenon in an innovation network context. Inspired by previous research (cf. Uzzi & Spiro 2005, Fleming et al.
2007; Schilling & Phelps 2007) we put the ?small-world hypothesis? to the test according to which small worlds are
assumed to enhance creativity and the ability to create novelty in terms on innovations. We draw upon Zahra &
George?s (2002) potential and realized absorptive capacity concept to provide the missing theoretical link between
small-world network properties and firm innovativeness.



We employ a unique longitudinal dataset that encompasses industry data, innovation data and network data for the
entire population of 233 German laser source manufactures between 1990 and 2010 to analyze the relationship
between small-world network properties at the macro level and the firm specific patenting activities at the micro level
over time. In line with Fornahl et al.(2010) we used data on 570 publicly funded R&D cooperation projects to construct
annual networks. Estimation results from a Negative Binomial panel data model with fixed and random effects indicate a
positive relatedness between a network?s average path lengths and firm level innovative performance (measured by
patent applications) at later points. Our findings for network clustering do not confirm our initial theoretical expectations.
Finally, in line with previous findings by Schilling & Phelps (2007) we found sound empirical evidence for a positive
relatedness between a network?s small-world nature and a firm?s subsequent innovativeness.
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Abstract:

Previous research demonstrates that large-scale network properties are likely to affect the
exchange of information, ideas and knowledge in various ways. In this paper we put the “small-
world hypothesis” to the test according to which innovation networks with comparably short
path lengths and a high level of clustering are assumed to enhance creativity and the ability to
create novelty at the micro level. More precisely, we employ a unique longitudinal dataset that
encompasses industry data, innovation data and network data for the entire population of 233
German laser source manufactures between 1990 and 2010 to analyze the relationship between
small-world network properties at the macro level and the firm specific patenting activities at
the micro level over time. Estimation results from a Negative Binomial panel data model
indicate a positive relatedness between a network’s average path lengths and firm level
innovative performance at later points. Our findings for network clustering do not confirm our
initial theoretical expectations. Finally, in line with previous findings by Schilling & Phelps
(2007) we found sound empirical evidence for a positive relatedness between a network’s small-
world nature and a firm’s subsequent innovativeness.
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1 Introduction

In the late 1960s Stanley Milgram conducted an experiment that is still highly topical,
particularly in the field of network research. The specific concern of his research project
was to understand how communication processes work in social systems (Uzzi & Spiro,
2005, p. 450). The constellation of his so-called “letter-passing” experiment was quite
simple. He sent letters to a randomly chosen set of participants who were scattered
throughout the United States. Written instructions were included asking the recipients to
pass the letter on to a pre-specified target individual (Newman, 2010, p. 55). It turned
out that almost one third of the letters sent even reach far away targets after an average
of around six distinct steps. Milgram’s (1967) groundbreaking experiment demonstrated

that people in the United States are separated by more or less six degrees of separation.

Milgram’s findings have some far-reaching implications for innovation networks.
Innovation networks allow organizations to exchange existing information, knowledge
and expertise (Cantner & Graf, 2011, p. 373). At the same time, innovation networks
provide the basis to commonly generate new knowledge which can be embodied in new
products, services or processes (ibid.). The experiment implies that not only a firm’s
strategic network positioning (Powell et al. 1996) but also the overall network topology
itself is likely to affect the exchange of knowledge among economic actors in
innovation networks. This, however, substantiates the assumption that large-scale
network properties at the macro level affect the innovative performance of network

actors at the micro level.

A closer look at large-scale network patterns is important for several reasons. Firstly,
there are good reasons to assume that network topologies affect the exchange of
information, ideas and knowledge in multiple ways. Second, systemic level studies are
still scant but highly relevant for understanding the collective nature of innovation
processes. Finally, systemic level studies have some straightforward implications, not
only for firms but also for policy makers, by providing an informative basis for the
evaluation of cooperation-related innovation policies at the national and supra-national

level.

In a nutshell, the overall goal of this study is to contribute to a deeper understanding of
the small-world phenomenon in an innovation network context. Inspired by previous
research (Uzzi & Spiro 2005, Fleming et al. 2007; Schilling & Phelps 2007) we put the

“small-world hypothesis” to the test according to which small worlds are assumed to
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enhance creativity and the ability to create novelty in terms on innovations. To
accomplish this task we employ a unique panel dataset for the entire population of 233
German laser source manufactures between 1990 and 2010. All network measures were
calculated annually on the basis of 570 knowledge-related publicly funded R&D
cooperation projects. Our data allows for an exact time tracking of all firm entries and
exits on the one hand, and all tie formations and tie terminations on the other. We draw
upon exploratory network analysis methods and employ panel data estimation
techniques. Patent grant and patent applications with a one and two year time-lag were

used as proxies for firm innovativeness.

The paper is organized as follows: in Section 2 we briefly discuss some selected studies
and specify our research question. We continue in Section 3 by providing the graph
theoretical underpinnings of small-world network properties. Then, we introduce our
conceptual framework and derive a set of testable hypotheses. In Section 4 we provide a
short overview of industry, data and methods that were used for the purpose of analysis.
In Section 5 we continue with a description of the empirical model and present our
estimation results. Finally, after a brief discussion of our main findings we conclude

with some critical remarks.

2. State of the art and research question

It is all the more astonishing that large-scale network properties have been widely
neglected in the field of interorganizational alliance and network research over the past
decades.' Only recently have economists, sociologists and management scholars started
to address the “small-world” phenomenon.” One possible explanation is that it took
scholars about thirty years to quantify Milgram’s initial idea. Watts & Strogatz (1998)
have shown that the “small-world” phenomenon can be empirically analyzed by using
relatively simple network measures. This analytical approach was originally designed
for the analysis of unipartite networks. Only a few years later, a reconceptionalization
for bipartite networks has been proposed by Newman and his colleagues (2001). Since
then a few excellent empirical studies were conducted which explicitly analyzed the
relationship between “small-world” properties and the creation of novelty and

innovation (Uzzi & Spiro, 2005; Fleming, et al. 2007; Schilling & Phelps, 2007).

' Most notable exceptions are the studies by Baum et al. (2003), Corrado & Zollo (2006), Uzzi & Spiro

(2005), Fleming et al. (2007), Schilling & Phelps (2007) and Cassi & Zirulia (2008).
For a comprehensive overview of previous research in this area see Uzzi et al. (2007).



One of the first empirical studies on collaboration, creativity and small-worlds was
conducted by Uzzi & Spiro (2005). The authors analyzed the relationship between
small-world properties in the Broadway musical industry and creativity in terms of the
financial and artistic performance of musicals produced from 1945 to 1989. This setting
is remarkable for two reasons. Firstly, the network measures were constructed based on
bipartite network data. In other words, groups of artists were treated as fully connected
cliques. To handle the data properly, novel statistical techniques (Newman et al. 2001)
were applied for the detection and interpretation of small-world properties which were
explicitly designed for the analysis of bipartite networks. Finally, it is interesting to note
that Uzzi & Spiro (2005) measured performance outcomes at the team level and not the
actor level. They reported a parabolic small-world network effect in a sense that

performance initially increased and then decreased after a certain point.

In a similar vein, Fleming and colleagues (2007) raised the question of why some
regions outperform others in terms of innovativeness. Like Uzzi & Spiro (2005) they
focused explicitly on small-world networks. However, both “small-world” properties
and innovative performance were measured at the regional level. Based on patent co-
authorship data they showed that comparably short path lengths and larger connected
components are positive correlated to increased innovation. Nonetheless, they failed to
find empirical evidence that the small-world properties of the regional innovation

network enhanced firm innovativeness.

The most comprehensive study on small-worlds and firm innovativeness was provided
by Schilling & Phelps (2007). They analyzed the patent performance of 1,106 firms in
11 industry level alliance networks based on a comprehensive panel dataset. The
findings of the study provide support for the small-world hypothesis by showing that
networks with comparably short path lengths and high clustering have a significant
impact on the innovativeness of the firms involved. The authors came to the conclusion
that local density and global efficiency can exist simultaneously, and in particular, the
combination of these two network characteristics enhances innovation (Schilling &
Phelps, 2007, p. 1124). Despite these interesting findings the study has some
limitations. The most notable is that the authors had to make assumptions about alliance
duration due to a lack of information on alliance termination dates. They assumed that
alliance relationships last for three years on average. In the worst case, this could result
either in a systematic underestimation or overestimation of small-world network

properties.



All of these studies provide us with valuable insights into the small-world phenomenon.
However, this discussion also reveals that recent empirical findings have so far been
rather mixed and inconclusive. In addition, we still lack an in-depth understanding of
how large-scale network properties affect firm innovativeness. In other words, we have
to open up the black box in order to understand through which mechanisms or
transmission channels firm innovativeness is affected by systemic level network

properties.

Consequently, the aim of this examination is twofold. From a theoretical point of view,
we draw upon a reconceptualization of the absorptive capacity concept proposed by
Zahra & George (2002) to provide the missing link between overall network
characteristics and a firm’s innovative performance. From an empirical point of view,
we put the “small-world” hypothesis to the test according to which small-world
networks are assumed to enhance an embedded firm’s creativity and its ability to create
novelty in term of innovation. More precisely, we analyze the relationship between
distinct large-scale patterns (i.e. “weighted clustering coefficient” or “avg. path-length”)
and firm innovativeness on the one hand, and small-world properties (i.e. “weighted

clustering coefficient” and “avg. path-length”) and firm innovativeness on the other.

3 Large-scale network properties, absorptive capacity and
the “small-world hypothesis”

3.1 Graph theoretical foundation of the “small-world” phenomenon

Small-world networks are characterized by two structural particularities: a high level of
clustering and short average path lengths. The theoretical conceptualization and
quantification of the small-world phenomenon can be traced back to the pioneering
work of Watts & Strogatz (1998). The authors argued that a compression of real-world
networks and randomly generated networks should reveal some systematic differences
with regard to network clustering and actor reachability. They proposed using two
simple graph theoretical concepts — “cluster coefficient” and “average distance” — and
calculating two ratios — “clustering coefficient ratio” (CC ratio) and “path length ratio”
(PL ratio) — in order to check for the existence of small-world properties in real world
network. Quantitative network analysis methods provide a rich toolbox for quantifying

the concepts (cf. Wasserman & Faust, 1994).



We start with the clustering coefficient (cf. Watts 1999; Watts & Strogatz, 1998). The
clustering coefficient is a graph theoretical concept that allows the connectedness and
crowding in a network to be quantified. This more indirect tie-related concept captures
the density of an actor’s surrounding and measures how many of its direct partners are
interconnected. A network is said to be highly clustered or cliquish when many of the
actor’s contacts are connected to each other (Uzzi, et al. 2007). The overall network
clustering coefficient is the average of all individual clustering coefficients for the entire
network. In contrast, the weighted overall clustering coefficient is defined as the
weighted mean of the clustering coefficient of all the actors, each one weighted by its
degree (Borgatti, et al. 2002). The calculation of the clustering coefficient is
straightforward. The indicator simply measures the density of triangles in a given
network (Newman, 2010, p. 264). Firstly, it is important to consider that the percentage
of closed triads is three times the total number of closed triads (Uzzi, et al. 2007, p. 79).
Secondly, we have to quantify the number of triangles (numerator) and the number of
connected triples (denominator). This lead to the following definition of the clustering

coefficient (Uzzi, et al. 2007, p. 79):

__ 3 x number of triangles

(1) CC

number of triples

The coefficient varies from 0 to 1 where a value of zero represents no clustering and a

value of one represents full clustering (Uzzi, et al. 2007, p. 79).

Now we take a closer look at the shortest paths (or distances) between network actors.
In order to quantify the average reachablility among actors in a connected graph, we
have to quantify the geodesics® between all pairs of actors. In this context it is important
to note that paths between two actors can have different lengths in directed networks
(Newman, 2010, p. 242). In unconnected networks (i.e. networks with at least two
components) the distance for at least one pair of actors can reach infinity (Wasserman &
Faust, 1994, p. 110). As most real world networks are not fully connected (Newman,
2010, p. 237) this issue is usually tackled by focusing on the main component.® The
average path length captures the reachability among all network actors in a connected

graph or sub-graph. The measure can be defined as “[...] the average number of

?  The shortest path between a pair of network actors is referred to as the geodesic distance (Wasserman

& Faust, 1994, p. 110).

Newman (2010, p. 235) reports that the main component usually fills more than 90% of the entire
network in the majority of real world networks such as social networks, biological networks,
information networks or technological networks. For the German laser industry network we found that
the main component fills 94.51% of the network on average.

4
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intermediaries, that is, the degrees of separation, between any two actors in the network
along their shortest path of intermediaries” (Uzzi et al. 2007, p. 78). Calculating the
shortest path distance between pairs of nodes in a network is much harder than
calculating the clustering coefficient and no exact expression for the mean distance has
been found yet (Newman, 2010, p. 560). As a consequence, we refer to the so-called
average distance weighted reach concept (Borgatti, et al. 2002; Schilling & Phelps,
2007) to capture the reach of the network:

) AR=[znzjdiU]/n.

The number of network nodes is given by n, and d;; is defined as the number of smallest
geodesic distances from actor i to a partner j; with i#j (cf. (Schilling & Phelps, 2007, p.
1118). The measure provides an important macro level indicator by quantifying how far

the distances between all pairs of network actors are on average.

Watts & Strogatz (1998) demonstrated that real-world networks with a CC ratio much
higher than 1.0 and a PL ratio of about 1.0 have a small-world character. A related
indicator is the so-called “small-world Q” (defined as: the CC ratio divided by the PL
ratio), where Q values that are much greater than 1.0 indicate the small-world nature of
a real-world network (Uzzi, et al. 2007, p. 79). In addition, Newman et al. (2001) have
shown that the “path length ratio” in bipartite networks has basically the same
interpretation as in unipartite networks (Uzzi & Spiro 2005, p. 454). In contrast, the
“clustering coefficient ratio” has to be interpreted differently in the sense that a
coefficient ratio of about 1.0 indicates within-team clustering whereas an exceeding
clustering coefficient ratio indicates an increase in between-team clustering (Uzzi &

Spiro 2005, p. 454-455).

What do these graph theoretical considerations tell us with regard to firm
innovativeness? Or to put it another way, what is the theoretical explanation that
substantiates the assumption that small-world properties at the systemic level enhance a
firm’s ability to innovate? Earlier researchers have argued as follows (Schilling &
Phelps, 2007, pp. 1114-1115): On the one hand, a high level of clustering increases the
network’s information transmission rate, enhances a firm’s willingness and ability to
exchange knowledge and enables richer and greater amounts of information and
knowledge to be integrated. On the other hand, networks with short average path

lengths enhance reachability among actors and generally improve information



accessibility at the systemic level. There is no doubt that these arguments provide an
intuitive reasoning behind the consequences of potential firm level innovation outcomes
caused by increased information permeability in a small-world network. However, these
arguments do not directly address what is happening at the firm level during the firm’s

efforts to innovate.

3.2 Potential and realized absorptive capacity — the missing link

We argue that Zahra & George’s (2002) reconceptualization of Cohen & Levinthal’s
(1990) initially proposed “absorptive capacity” concept provides the missing link in
understanding the interrelationship between systemic network level properties and firm

level innovation outcomes.

The originally proposed “absorptive capacity” concept by Cohen & Levinthal (1989;
1990) has significantly enhanced our understanding of a firm’s ability to identify,
exploit and assimilate external knowledge and apply it for commercial ends. Cohen &
Levinthal (1989) focused initially on the costs of acquiring new technological
knowledge and on the incentives for learning that determine the firm’s willingness to
invest in creating and establishing absorptive capacity. Later the authors enriched the
construct by emphasizing the relevance of individual learning processes and
incorporating the notion that learning is a cumulative process (Cohen & Levinthal,
1990). Furthermore, they adapted insights from research on individual cognitive
structures and individual learning processes. They applied these findings to the
organizational level and emphasized that an organization’s absorptive capacity is path-
dependent, builds on prior investments in individual absorptive capacity and depends on
an organization’s internal communication processes and its ability to share knowledge
(Lane, et al., 2006, p. 838). In addition, they pointed to the fact that prior accumulated
knowledge enables the firm to predict and appraise new technological trends and
developments in a timely way. Since then the concept has attracted a great deal of
attention.” Several scholars have proposed insightful reconceptualizations and
refinements of Cohen & Levinthal’s original concept (Lane & Lubatkin, 1998; Van Den
Bosch, et al. 1999; Zahra & George, 2002).

For the purpose of this analysis we draw upon the concept proposed by Zahra & George

(2002). This reconceptualization builds upon the distinction between “capabilities” and

°  Lane et al. (2006) identified a total of 289 papers in 14 academic journals between July 1991 and June

2002 that cite Cohen & Levinthal’s (1990) initially proposed “absorptive capacity” concept.
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“dynamic capabilities”. By starting from the dynamic capability perspective (Teece, et
al. 1997; Teece 2007; Katkalo, et al. 2010) they suggest a separation of the original
absorptive capacity concept into potential absorptive capacity and realized absorptive
capacity and introduce an efficiency factor # that captures the interrelationship between
these two constructs (Zahra & George, 2002, p. 194). They argue that four capabilities’—
i.e. knowledge acquisition, assimilation, transformation, and exploitation — are
combinative in nature and build upon each other. These four capabilities make up a
firm’s absorptive capacity that has to be regarded as a dynamic capability pertaining to
knowledge creation and utilization that enhances a firm's innovative performance and
ability to gain and sustain a knowledge-based competitive advantage (Zahra & George,
2002, p. 185). They define absorptive capacity as “[...] a set of organizational routines
and processes by which firms acquire, assimilate, transform, and exploit knowledge to

produce a dynamic organizational capability” (Zahra & George, 2002, p. 186).

Figure 1 illustrates Zahra & George’s (2002) model. The refined absorptive capacity
construct, at the core of the model (cf. Figure 1, center), is divided into potential
absorptive capacity (PACAP), which includes knowledge acquisition and assimilation,
and realized absorptive capacity (RACAP), that consists of knowledge transformation
and exploitation capabilities. This absorptive capacity construct connects the
antecedents, i.e. external knowledge sources, knowledge complementarities and
experiences (cf. Figure 1, left) with firm level outcomes, i.e. firm innovativeness and
sustainable competitive advantages (cf. Figure 1, right). In addition, the model accounts
for several moderating effects: “activation triggers”, “social integration mechanisms”,
and “regimes of appropriability”. Moreover, an efficiency factor # is integrated into the
model that captures a firm’s ability to transform and exploit external knowledge sources
in order to gain a sustainable competitive advantage. This factor reflects the extent to
which a firm can make commercial use of potentially available knowledge. In other
words, RACAP approaches PACAP in firms with a high efficiency factor (Zahra &
George, 2002, p. 191). This model paves the way for a dynamic conceptualization of
absorptive capacity and provides several interesting implications for systemic level
network studies. Below we argue that a simple extension of the model provides the
missing link for understanding how large-scale properties at the overall network level

affect innovation outcomes at the firm level.

6 Zahra & George (2002) draw upon Winter (2003, p. 983) who defines as capabilities “[...] a high-level
routine that, together with its implementing input flows, confers upon an organization's management a
set of decision options for producing significant outputs of a particular type".
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Figure 1: Conceptual framework — an adapted model of potential and realized absorptive

capacity
Large-scale properties Absorptive capacity

- (n) . »
Knowledge source Potential PACAP Realized RACAP Competitive advantage
and complementarily Acquisition Transformation Strategic lexibility
Experience Innovation

P Assimilation Exploitation Performance
Systemiclevel
Activation trigger Social integration Regim.es Of
mechanisms appropriability

Source: Zahra & George (2002, p. 192), modified.

In doing so, we have to take a closer look at the first element of the framework (cf.
Figure 1, left). According to the model originally proposed by Zahra & George (2002,
p. 191) there is a direct link between external knowledge sources and complementarities
and a firm’s PACAP. These external knowledge sources encompass, among other
things, various structural forms of interorganizational relationships such as R&D
consortia, alliances, or joint ventures.” Thus cooperative relationships to external
partners can serve as a vehicle for accessing new information and knowledge. However,
it is important to note that not only direct but also indirect interorganizational linkages
have to be considered in this context (Gulati, 1998). As a consequence, we apply here
not a relational but rather a structural network embeddedness perspective. One
particular feature of a network is that a particular firm can even reach far distant
organizations that are spread throughout the entire network space by second or third tier
ties. This means that a firm that is a part of the industry’s innovation network has
potential access to an extensive pool of external technological knowledge sources
spread throughout the entire network. Thus, in line with previous systemic-level studies
(Uzzi & Spiro, 2005; Fleming, et al. 2007; Schilling & Phelps, 2007), we argue that
actual access to information and other firms’ knowledge stocks is likely to be affected
by the structure of the network in question. The network topology itself plays a key role

in the permeability of the network.

In contrast to previous research, we believe that an extension of the absorptive capacity
concept outlined above and an in-depth exploration of structural network characteristics

adds extra value in our understanding of how large-scale properties at the systemic level

7 Due to the purpose of this study we focus explicitly on the innovation network as one particular type

of external knowledge source that can be tapped by the firms.
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affect a firm’s efforts to innovate (cf. Figure 1, left). Or to put it differently, given that
network topologies can facilitate but also hamper the flow of information and
knowledge among actors in an innovation network, the question arises as to what these

structural network patterns look like.

3.3 Large-scale network properties — opening up the black box

Networks can exhibit quite heterogeneous structural patterns. Figure 2 illustrates four
fairly different network topologies. To start with, we look at a typically random
network. It is important to note that the emergence of these networks is not very likely
under realistic conditions. Nonetheless, we explicitly consider and discuss all four cases

to develop our theoretical arguments.

The first network example is characterized by a rather fragmented network structure that
consists of five components (cf. Figure 2, I). The structural configuration of the network
shows no significant peaks in term of the actors’ nodal degrees. The minimum degree is
one and the maximum degree is two. Network actors within a component are not
directly but rather are indirectly connected to other actors in the same component. The
benefits of a firm in participating in such a fragmented, randomly distributed network
are rather limited. The reasons for this are straightforward. Firstly, the pool of
potentially accessible knowledge sources is limited by the size of the component in
which the firm is embedded. Secondly, the geodesic distances to most other actors are
infinite due to the high degree of fragmentation. Thus, knowledge transfer processes are
likely to be hampered by the component’s size or even entirely prevented by the overall

network structure.

These issues lead to our second network example. Figure (2, II) illustrates a fully
connected but randomly distributed network structure. Like before there are no
systematic biases in the degree distribution at the overall network level. The main
difference is that the network consists of only one large component. This, however, has
some important implications with regard to knowledge diffusion processes.
Theoretically, we would expect that a firm’s participation in such a network broadens
the scope and variety of potentially accessible information and knowledge sources. One
could argue that the firm’s chance of identifying and actually accessing external
knowledge sources that fit with its own set of capabilities increases with the number of
potentially accessible knowledge sources. The crucial point is that such an increased set
of opportunities would allow a firm to make better use of its knowledge exploitation

11



capabilities. According to Zahra & George (2002) this would be reflected in a higher
efficiency factor # and lead to a higher firm level innovation outcome at subsequent
points in time. In fact the actual situation looks somewhat different. The likelihood of
successfully exchanging knowledge between two indirectly connected network actors
decreases with the number of other actors that lie on the geodesic between them. A
closer look at our network example illustrates this point (Figure 2, II). In this case we

have up to eleven intermediates between the most distant actors in the network.

Figure 2: Ilustration of network topologies
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Source: Author’s own illustration.

Next, we turn our attention to a somewhat more realistic network structure. By now, it
is well-recognized that some nodes attract ties at a higher rate than others. This is
reflected in real world networks by the emergence of a strongly biased degree
distribution at the overall network level. These types of networks are also known as
power law distributed or scale free networks (Barabasi & Albert, 1999; Barabasi &
Bonabeau 2003). Real-world network topologies can differ significantly in terms of

their structural features.

Our third network example consists of three components (two peripheral & one main
component) and the nodal degrees range from one to five (cf. Figure 2, III). The
network is disconnected and clustered. The nodes within these components are well-
connected among one another but they have no linkages to actors in other areas of the
network. We start our line of argument by focusing on the network’s main component
(cf. Figure 2, III, bottom). A firm’s involvement in a highly interconnected main
component of a disconnected network has some considerable advantages. Firstly, all
main component firms are connected to one another. A main component firm can reach
most other actors in the same component in only a few steps. Short paths are likely to
facilitate potential knowledge transfer and learning processes. Most innovation

12



researchers would agree that a decreasing path length is positively related to firm
innovativeness (Fleming, et al. 2007, p. 941). Secondly, a high degree of
interconnectedness allows a focal firm to achieve cooperation-related synergy effects.
These effects can result from direct but also from indirect linkages among a focal
actor’s directly connected partners (White, 2005; Hoffmann, 2005). Redundant
knowledge transfer channels allow firms to circumvent potentially emerging knowledge
transfer barriers. It has been argued that clustering promotes collaboration, resource

pooling and risk sharing (Fleming, et al. 2007, p. 940)."

In summary, the previously outlined arguments substantiate the assumption that a firm’s
embeddedness in the main component of a highly clustered but disconnected innovation
network enhances a firm’s scope and variety of accessible knowledge sources. Two
structural characteristics, i.e. short path lengths and a high level of clustering are
considered to be important in this context. With the extension of Zahra & George’s
(2002) absorptive capacity model in mind, it is plausible to assume that these structural
features enhance a firm’s efficiency factors #. This, in turn, is likely to be positively
related to firm-level innovation outcomes at later points in time. The arguments above

form our first two hypotheses:

H1 Short average path lengths in the overall network enhances a
firm’s efficiency factor #; this, in turn, is positively related to its
innovative performance at later points in time.

H2 A high degree of clustering at the overall network level enhances
a firm’s efficiency factor #; this, in turn, is positively related to its
innovative performance at later points in time.

Last but not least, we address small-world properties of innovation networks. It
becomes apparent that the previously discussed real-world network in itself encounters
barriers in information and knowledge transfer. As already stated above, the network
consists of several densely interconnected components which are not connected to one
another. This leads us to take a look at the last network example. Figure (2, IV)
illustrates a highly clustered but fully connected real-world network. The simultaneous
occurrence of cohesive subgroups and short paths in a network has some interesting

implications.

It is important to note that these considerations only hold true as long as the number of disconnected

network components is comparably small. The benefits diminish with an increasing number of
disconnected subgroups in the network. Or to put it another way, increasing fragmentation disestablish
the benefits described above.

13



Firstly, such a network is rich in structural holes and the cohesive subgroups are
interconnected through network brokers (Burt, 1992). They bridge structural gaps in a
network and establish important connections between otherwise unconnected or at least
loosely connected network subgroups (ibid.). This, however, significantly decreases the
average path lengths at the overall network level and increases, at the same time,
information permeability. Secondly, the benefits of cohesive subgroups in a firm’s close
network surrounding are be maintained. The simultaneous occurrence of clustering and
short average path lengths indicate the small-world nature of a network (Watts &

Strogatz 1998).

In line with previous research (Schilling & Phelps, 2007) we argue that small-world
network properties are accompanied by some extra additive effects which are assumed
to enhance a firm’s efficiency factor #. The simultaneous occurrence of both high
clustering and short average path lengths is likely to catalyze and foster local
cooperation effectiveness and enhance global information transmission efficiency
(Schilling & Phelps, 2007, p. 1116). These considerations substantiate our last
hypothesis:

H3 A firm’s participation in a small-world network (characterized by
short average path lengths and a high level of clustering) enhances
its efficiency factor #; this, in turn, is positively related to its
innovative performance at later points in time.

4 Industry, data and methods

4.1 Introducing the German laser industry

To start with, we take a brief look at the industry’s value chain (cf. Figure 3). The laser
industry value chain itself consists of the four main elements: “materials”,
“components”, “laser beam sources & periphery” and “laser systems” accompanied by
cross-sectional services that provide these four elements with certain technical and
commercial advice. In addition, Figure 3 illustrates the linkages to the supply and
market side as well as the contact points to technology and commercial partners. Laser
source manufacturers (LSMs) are considered to be the heart of the industry’s value
chain because they develop and produce the key component of every laser-based
machine or system. As a consequence, this study focuses primarily on laser source
manufacturers (LSMs) and their cooperation activities. However, not only LSMs but
also universities or other public research organizations (PROs) are an important source
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of new technological knowledge (Agrawal, 2001, p. 285). To account for this fact we
explicitly considered all linkages and interactions between LSMs and all other kinds of

laser related public research organizations (PROs) in this study.

Figure 3: Laser industry value chain
Technological Dimension
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Source: Author’s own illustration, based on: (TSB, 2010, p. 18)

The German laser industry provides an ideal setting for studying small-world properties
of interorganizational innovation networks for several reasons. Firstly, the development
of laser technologies requires knowledge from various academic disciplines, such as
physics, optics and electrical engineering (Fritsch & Medrano, 2010). Moreover, the
industry can clearly be characterized as a science-driven industry (Grupp, 2000) in
which a firm’s ability to innovate is a key factor in its performance and success. The
interdisciplinary and science-based character of the industry is reflected in the high level
of cooperation activities between German laser source manufacturers among themselves
and with laser-related public research organizations (Kudic, et al. 2011). Secondly, the
economic potential of the industry is meanwhile well recognized by national and supra-
national political authorities. Over the past few decades Germany has developed into a
world market leader in many fields of laser technology. For instance, Mayer (2004)
reports that 40% of all laser beam sources purchased worldwide in 2003 were produced

by German laser source manufacturers. The world market share for laser sources used in

?  TSB Innovationsagentur Berlin GmbH, www.tsb-optik.de (accessed: November 2011).
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laser processing systems was even higher and amounted to 50% in the same year.
Finally, there are only very few empirical studies that have explicitly analyzed the
relatedness between network characteristics and innovative performance in the optical
industry (Ouiment et al. 2007; Lerch 2009; Sydow et al. 2010) and even less research
has been conducted on networks in the laser industry (Noyon et al. 1994; Shimizu &
Hirao 2009). To the best of our knowledge, there is up to now no longitudinal empirical
study that has analyzed the relationship between large-scale network properties and

firm-level innovation processes in the German laser industry

4.2 Data, variables and methods

Basically four main data sources were used to construct a longitudinal panel dataset:

patent data, industry data, geographical data and network data.

Patent data was used to measure innovative performance at the firm level. We are not
the first to use patent data as an innovation proxy (Jaffe, 1989; Jaffe, et al. 1993). There
is a longstanding discussion in the literature on the conceptual background of
innovation measurement (cf. Smith, 2005). Previous studies provide us with important
insights into the pros and cons of using patents to measure innovation performance.'® In
accordance with contemporary research (Schilling & Phelps, 2007) we decide in favor
of annual patent application counts as a proxy for innovation output to specify our
endogenous variable [pacnt]. Three patent data sources were tapped to gather the patent
data needed. In order to generate a complete overview of the firms’ patent activities''
we used the European Patent Office’s database (PatStat, Version 2010)'? as the primary
data source. DEPATISnet (the German Patent and Trade Mark Office’s online database)
and ESPACEnet (European Patent Office database) were employed for data completion

and for cross checking the results from our initial data gathering procedure.

Industry data came from a proprietary dataset containing the entire population of
German laser source manufacturers between 1969 and 2005 (Buenstorf, 2007). Based

on this initial dataset we used additional data sources to gather information about firm

For a detailed discussion on the measurement of innovation see for instance Smith (2005), Fritsch &
Slavtschev, (2007) and Brenner & Broekel (2011).

By drawing upon the initially complied list of 233 LSMs, we conducted a firm-specific search in order
to identify and extract all patents which were assigned to the firms. A list of various ways to spell
each firm’s name was used to deal with spelling issues. In the case of micro firms (i.e. firms with less
than 10 employees) we also searched for the founder’s name.

Data access was provided by the IWH department “Formal Methods and Databases”. For an overview
and detailed description of the raw data source used see EPO (2010).
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entries and exits after 2005."> We chose the business unit or firm level for the purpose
of this analysis. In addition, we identified 145 universities and public research
organizations with laser-related activities by using two complementary methods — the

expanding selection method and the bibliometric approach.'*

Network data was gathered from two official databases on publicly funded R&D
collaboration projects — the Foerderkatalog database and CODRIS database." In other
words, we focus on a particular type of formal knowledge-related linkages i.e. publicly
funded R&D cooperation projects. These partnerships are very well documented by
official funding authorities. Other researchers have provided solid theoretical as well as
methodological arguments for the use of nationally funded R&D cooperation project
data (cf. Broekel & Graf, 2011, p. 6; Fornahl, et al. 2011) and supra-nationally funded
R&D cooperation project data (cf. Scherngell & Barber, 2009; Scherngell & Barber,
2011) for the construction of knowledge-related innovation networks. The
Foerderkatalog database contains information on more than 110,000 ongoing or
completed subsidized research projects. The second raw data source was an extract from
the CORDIS project database which includes a complete collection of R&D projects for
all German companies which were funded by the European Commission. This database
extract encompasses a project dataset with over 31,000 project files and an organization
dataset with over 57,100 German organizations and roughly 194,000 international
project partners. In total, we were able to identify, for the entire population of 233
German laser source manufacturers, 570 R&D projects with up to 33 project partners

from various industry sectors, non-profit research organizations and universities.

The following data sources were tapped: (I) we were given access to updated German laser industry
data, again provided by Guido Buenstorf; (II) annually published laser industry business directories
(i.e. “Europdischer Laser Markt”) provided by the B-Quadrat Publishing Company; (III) firm data
from Germany’s official company register (i.e. “Bundesanzeiger”); (IV) and two additional data
sources i.e. MARKUS database, provided by Bureau van Dijk Publishing and the Creditreform
archival database, provided by the Creditreform Company.

At first, we applied the expanding selection procedure originally proposed by Doreian & Woodard
(1992) to identify laser-related public research organizations (PROs). The identification procedure
starts with a “fixed list” (in our case the annually complied LSM lists) and adds all PROs that are
linked to LSMs to create an “extended list”. However, this procedure ignores all PROs that were
actively operating in the field of laser research but had no cooperation linkages to any LSM between
1990 and 2010. Consequently we applied a complementary method based on bibliometric data to
complete the PRO lists. Data for this analysis was provided by the LASSSIE consortium (Albrecht et
al. 2011).

Data on publicly funded R&D cooperation projects can be accessed by tapping the following online
interface: Foerderkatalog data: http://foerderportal.bund.de/foekat/jsp/StartAction.do (accessed: May -
September 2011); CORDIS data: http://cordis.europa.cu/search/index.cfm?fuseaction=search.
advanced (accessed: May 2012).
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The data sources described above were used to construct interorganizational innovation
networks and calculate network indicators on a yearly basis. We calculated weighted
clustering coefficients /nw_wclust] and average path length /nw _areach] on an annual
basis (cf. Equations 1 & 2). An interaction term was calculated to capture the small-
world properties of the network [inter sw]. Several additional control variables were
calculated. We measured firm-specific cooperation activities with two cooperation
count measures based on the Foerderkatalog data [coopcnt fk] and CORDIS data
[coopcnt _c], respectively, as well as a combined cooperation count indicator
[coopcnt_fke] consisting of the sum of both. Moreover, we accounted for cooperation
funding by including a variable that measures the firm’s amount of cooperation funding
received annually /coopfund fkc] in thousand euros. We also included a linear firm age
measure [firmage] as well as a squared term [firmage sq] to account for firm maturity.
In addition, two network level variables were included to control for the structural
network characteristics at the overall network level. The first variable captured the size
of the overall network /nw_size/ defined as the proportion of firms with at least one
dyadic partnership in a given year. The second variable measured the connectedness of
the overall network /mw density]. Standard algorithms implemented in UCI-Net 6.2

were used to calculate the network measures (Borgatti et al. 2002).

Next, we take a brief look at the variable description and basic summary statistics (cf.
Table 1). In total, we have 2645 firm-year observations in the time span between 1990
and 2010. The average number of observations per firm amounts to 11.35. Table 2

reports the correlation coefficients for all variables in our empirical models.

Table 1: Descriptive statistics — clustering, reach and small-world properties

Variable Variable definition Summary statistics

Obs. Mean Std. Dev. Min Max
Endogenous variables
papcount Patent applications (annual count) 2645 2662004 1743323 0 366
pgrcount Patent grants (annual count) 2645 0.339130 1.635554 0 28
Control variables
firmage Age of the firm 2645 8.055955 6.800477 0 43
firmage_sq Age of the firm, squared 2645 111.1274 1778146 0 1849
coopcount Count of cooperation events (annual) 2645 0275992 0774138 0 8
coopfund Annual cooperation funding received (in k€) 2645 132 2991 8518748 0 31863
nw_size Network size (overall network level) 2645 0.381853 0.060200 0.240506 0.472393
nw_density Network density (overall network level) 2645 0.088119 0.069955 0.037300 0.440500
Network level properties
nw_welust Weighted clustering coefficient 2645 05815221 0.1610685 0.345 0.906
nw_areach Average distance based reach measure 2645 3.094311 0.5041826 2.075 3.786
inter_sw "Small world" indicator (nw_wclust x nw_areach 2645 1.732396 0.2989206 1.14021 2.18748

Source: Author’s own calculation.
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Table 2: Correlation matrix — clustering, reach and small-world properties

par pap firm firm coopcount coopfund  nw _size nw nw_welust nw_areach infer_sw
count count age age_sq _density

papcount 1.0000

percount 0.6506 1.0000

firmage -0.0566 0.0105 1.0000

firmage_sq -0.0455 -0.0047 0.9276 1.0000

coopcount 0.2535 0.2726 0.0101 0.0272 1.0000

coopfund 0.3923 0.3114 -0.0279 -0.0100 0.5112 1.0000

nw_size 0.0448 0.0670 0.2131 0.1603 0.0442 0.0147 1.0000

nw_density -0.0529 -0.0832 -0.2006 -0.1450 -0.0182 -0.0145 -0.6576 1.0000

nw_wclust -0.0529 -0.0835 -0.2530 -0.1901 -0.0074 -0.0153 -0.4684 0.6934 1.0000

nw_areach 0.0637 0.0965 0.2761 0.2062 0.0164 0.0100 0.7154 -0.7499 -0.8255 1.0000

inter_sw -0.0219 -0.0414 -0.1639 -0.1275 0.0026 -0.0141 -0.0656 0.3186 0.8357 -0.4020 1.0000

Source: Author’s own calculation.

Based on the data sources described above we conducted an initial exploratory analysis
to get an idea of what the overall network topology looks like. Figure 4 (top) displays
the weighted overall clustering coefficients and the average overall path length for both
the German laser industry innovation network and a randomly generated Erdés-Renyi
network.'® Network measures are calculated on an annual basis and the period under
observation is from 1990 to 2010. All measures are calculated using UCI-Net 6.2
(Borgatti et al. 2002). The corresponding CC ratios, the PL ratios and the small-world Q
values are reported in the table below (cf. Figure 4, bottom). The following structural

patterns are noteworthy.'’

Firstly, the German laser industry innovation network shows a relatively high level of
clustering and rather short average path lengths overall. Secondly, over time we can
observe decreasing weighted clustering coefficients and increasing average path lengths.
This is primarily due to the fact that the German laser industry network has
demonstrated a pronounced growth tendency over time. In other words, the number of
laser-related organizations that actively participate in the industry’s innovation network
increases over time. Thirdly, small-world measures indicate the emergence and
consolidation of the network’s small-world nature. More precisely, a comparison of the
real-world network with a randomly generated reference network reveals that the
German laser industry innovation network exhibits both higher overall clustering

coefficients and longer average path lengths for each year throughout the entire

' To ensure comparability between the real world and the random networks we proceeded as follows:

firstly, we generated a total number of 21 Erd6s-Renyi random networks for the period under
observation, one network for each year. Secondly, both the size and the density parameters were
adapted to the actual proportions of the real networks. Standard procedures implemented in UCI
Net 6.2 were used to generate the random networks (Borgatti et al. 2002).

Note that the calculations are based on bipartite network data. This is in line with the study by Uzzi &
Spiro (2005). However, the use of bipartite network data generates relatively high clustering
coefficients. This should be kept in mind when interpreting the results.
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observation period. The annually calculated CC ratios are clearly above 1.0 and increase
over time. PC ratios do not exceed the value range between 1.0 and 1.35 and the small-
world Q ratio lies significantly above 1.0 and demonstrates, like the CC ratio, a

pronounced tendency towards increasing values over time.

Figure 4: Weighted overall clustering coefficient and avg. overall path length
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weighted overall clustering avg. overall path-length (among small-world
year coefficient reachable pairs) properties
Real-world Random cC Real-world Random PC (Q)
1990 0.906 0.477 1.899 2.075 1.560 1.330 1.4279609
1991 0.743 0.263 2.825 2.268 1.820 1.246 2.26705159
1992 0.746 0.240 3.108 2.351 1.810 1.299 2.39305969
1993 0.777 0.175 4.440 2.658 2.020 1.316 3.37426637
1994 0.595 0.120 4.958 2.501 2.180 1.147 4.32193789
1995 0.793 0.105 7.552 2.553 2.300 1.110 6.8039468
1996 0.767 0.088 8.716 2.852 2.280 1.251 6.96783756
1997 0.638 0.093 6.860 3.027 2.280 1.328 5.16725812
1998 0.701 0.093 7.538 2.929 2.270 1.290 5.841731
1999 0.791 0.104 7.606 2.735 2.160 1.266 6.00675011
2000 0.761 0.115 6.617 2.579 2.090 1.234 5.36267849
2001 0.720 0.105 6.857 2.685 2.220 1.209 5.66959298
2002 0.579 0.082 7.061 2.789 2.410 1.157 6.10145257
2003 0.499 0.058 8.458 3.040 2.560 1.188 7.12221231
2004 0.369 0.053 6.962 3.090 2.860 1.080 6.44403737
2005 0.413 0.078 5.295 3.768 2.950 1.277 4.14540122
2006 0.567 0.042 13.500 3.548 2.850 1.245 10.8441375
2007 0.452 0.039 11.590 3.786 3.140 1.206 9.6122015
2008 0.446 0.032 13.938 3.768 2.970 1.269 10.9857683
2009 0.380 0.036 10.556 3.548 2.950 1.203 8.77646248
2010 0.345 0.031 11.129 3.786 3.080 1.229 9.05372936
mean 0.6185 0.1157 2.9684 24171
sd. 0.1692 0.1037 0.5386 0.4582

Source: Author’s own calculation and illustration.

Concerns were expressed that, unlike unipartite networks, bipartite'® networks
significantly exaggerate the network’s true level of clustering and understate the true
path length (Uzzi & Spiro, 2005, p. 453). To check for this issue we put our data to the
test. Based on the pioneering work of Watts & Strogatz (1998) a new interpretation of

small-world indicators for bipartite networks was proposed by Newman et al.

'8 Bipartite networks are based on the assumption that all members of a team form a fully connected

clique (Uzzi & Spiro, 2005, p. 453). We explicitly checked for this issue, as our network data is
compiled on the basis of multi-partner R&D cooperation projects.
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(2001).They showed that the “path length ratio” in bipartite networks has the same
interpretation as in the case of unipartite networks (Uzzi & Spiro 2005, p. 454). In
contrast, according to Newman et al. (2001) and Uzzi & Spiro (2005), the “clustering
coefficient ratio” has to be interpreted in a different way. A clustering coefficient ratio
of about 1.0 indicates within-team clustering whereas an exceeding clustering
coefficient ratio indicates an increase in between-team clustering (Uzzi & Spiro 2005, p.
454-455). In our case, both the comparably low path length ratio throughout the
observation period, ranging from 1.05 to 1.3, and the high and increasing tendency
towards comparably high clustering coefficient ratios over time, confirms our initial

suggestions.

In summary, the results of the exploratory analysis of large-scale network properties for
the German laser industry are suggestive of an increasing emergence and solidification

of small-world properties over time.

5 Estimation results and empirical findings

5.1 Model specification and estimation strategy

As our endogenous variable — annual patent application counts — only accepts
nonnegative integer values we choose a count data model specification for the purpose
of this analysis. Following Ahuja (2000), Stuart (2000) and Schilling & Phelps (2007)
we estimated panel data count models (Hausman et al. 1984)."° Basically, two
estimation techniques can be differentiated: the fixed effects and random effects
methods. In general, the use of fixed effects models provides some important
advantages. The fixed effects estimator is unbiased as it includes dummy variables for
the different intercepts and is more robust against selection bias problems than the
random effects estimator (Kennedy, 2003, p. 304). The problem that occurs with fixed
effects models is that all time-invariant explanatory variables are thrown out because the
estimation procedure fails to estimate a slope coefficient for variables that do not vary
within an individual unit (Kennedy, 2003, p. 304). In addition, using only within-
variation leads to less efficient estimates and the model loses its explanatory power
(Cameron & Trivedi, 2009, p. 259). In contrast, random effects estimators make better
use of the information values of patent data and generate efficient estimates with higher

explanatory power. In addition, random effects estimators can generate coefficient

¥ We used STATA 10.1 (Stata, 2007), a standard software package for statistical data analysis.
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estimates of both time-variant as well as time-invariant explanatory variables (Kennedy,
2003, p. 307). The major drawback of the random effects model is that correlations
between the error term and the explanatory variables generate biased estimates and thus

inconsistent estimation results (Kennedy, 2003, p. 306).

We adopted the following estimation strategy to test our hypotheses. First, we
implemented a two-year time lag structure in our empirical setting. Then, we estimated
panel Poisson models in order to obtain an initial idea of the relationship between
cooperation counts, network positioning measures and firm-specific patenting activity.
As our endogenous variables exhibited strong overdispersion, we then turned to a
negative binomial model specification with random effects (Cameron & Trivedi 1990).
This generalization of the Poisson model allows for overdispersion by including an
individual, unobserved effect into the conditional mean (Schilling & Phelps, 2007, p.
1119). In the next step, we estimated both fixed effects and random effects models.
Usually, the Standard Hausman Test (Hausman 1978) is used to decide which results to
interpret. In this analysis, most fixed effects and random effects estimates are consistent.
In a final step, we ran consistency checks to ensure the robustness of our results by

using a one-year time lag structure.

5.3. Estimation results

The presentation and discussion of our empirical findings is centered on the Negative
Binomial model for panel count data reported in Table 3. Robustness of our findings is
ensured by additional estimation results reported in Table 4. Results from both
estimation techniques (fixed effects and random effects) are reported in the tables below

(cf. Table 3 & Table 4).

Table 3 includes information on the total of five models. In addition to a baseline model
(i.e. BL Model), there is one model that entails the network clustering coefficient (i.e.
Model I), one model that compromises the overall average path length indicator (i.e.
Model II), and one model that accounts for small-world properties of networks (i.e.
Model III). The last of the five models is the fully-specified model that incorporates
indicators of a network’s clustering, reach and small world nature at the same time (i.e.

Model 1V).

The baseline model (cf. Table 3, BL Model) provides results for firm level controls (i.e.
firm age & firm age squared), cooperation-related controls (i.e. cooperation counts &

cooperation funding) and overall network level control variables (i.e. network size &
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network density). Results from a random effects specification (cf. Table 3, Model 1V)
reveal a positive and significant coefficient for cooperation counts. This should be
viewed with great caution because the fixed effects specification fails to show a positive
and significant relationship between cooperation counts and firm innovativeness. The
same is true for both the fixed effects and the random effects model with a time lag t+1
(cf. Table 4, Model IV). The situation looks fairly different for overall network control
variables, especially for network size. Estimation results (cf. Table 3, Model IV, FE &
RE; Table 4, Model 1V, FE & RE) provide strong empirical evidence for a negative

relatedness between network size and firm innovativeness.

Now we address clustering, reach and small-world effects. In general, interaction effects
in panel data models have to be interpreted cautiously. In contrast to Fleming et al.
(2007) the study by Schilling & Phelps (2007) explicitly addresses this issue. According
to the latter study, three aspects in particular have to be considered (Schilling & Phelps,
2007, pp. 1121-1122). Firstly, the individual effects of clustering and reach have to be
interpreted as “simple” and not as “main” effects. Secondly, in a strict sense, each
individual effect (reach or clustering) on a firm’s patent counts (in the full model) is
conditioned on the other variable taking on the value of zero. When controlling for this
issue in different model specifications signs can change. At the same time, this implies
that, for instance, negative signs for reach or clustering must not necessarily be
interpreted as a negative main effect.”’ Finally, multiplicative interaction terms are best
interpreted as mutually reinforcing effects. Keeping these issues in mind, we now move

towards the interpretation of individual and combined effects.

Hypothesis H1 suggests that a short average path length at the overall network level is
positively related to a firm’s innovative performance. Hypothesis H2 assumes a positive
relationship between clustering at the overall network level and a firm’s innovative
performance. Our last Hypothesis H3 suggests a positive relatedness between a

network’s small-world nature and a firm’s innovative performance.

° For an in-depth discussion of interdependent effects in panel count data models see Winkelman
(2003) and Jaccard & Turrisi (2003).
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Table 3: Estimation results — clustering, reach and small-world properties; patent applications,

time lag (t+2)
Variables Estimation results
Baseline Model Model () Model (Il) Model (lll) Model (IV)
Fixed Random Fixed Random Fixed Random Fixed Random Fixed Random
effects effects effects effects effects effects effects effects effects effects

firmage 01022012 01024719 02827257 02714577 02608898 02586384 02002634 01947403 03510981 03408033
firmage_sq -00073156 -00052259 -00118264 -00095319 -00111437 -00091046 -00098806 -00076586 -00139787 -00117428
coopent 05714882 09544829 ™ 05419512 .09080471 ™ 05701504 09396949 05424240 09156302 05772866 09451238
coopfund 00000789 00001272 00000904 00001399 00000728 00001199 00000962 00001464 00000755 00001235
nw_size -3.8560791** 4.0591897*** 42450032 """ 44560542 ** 30717744** 31756426 48507463 50871176 3964878 4.1247011*"

nw_density -39025440"* 37342787 .5.4885633™" 54673071 ** 45450498 4522680 48823746 47819077 2104296 -2.034096
nw_wclust 11088603 ™  1.1611018 ™ -10.647051 ™ -10.926502 ™"
nw_areach -28236740 © -31326415 " -1.9565952™  -2.0235219 ™"
inter_sw 44901422 46640724 ™" 39582876™*  4.059178 ™*
_cons 147383067 14602506 10165371 10050505 ™ 20200482 20895598 ™ 1100405 ™ 10870732 ™  65866316™ 67742169
In_r_cons 13420195 -13538645 -0.136454 -0.132991 -0.130151
In_s_cons -97386831™ -97281046 ™ -96994511 ™ 97476673 ™ -97493714 ™
chi? 2434534 30.054709 29330156 35970943 26690456 33.130402 30.034183 3651918 38.983625 46106422
I -1470.542 -2093.197 -1467.086 -2089.242 -1469.06 -2091.269 -1466.963 -2089.259 -1461.758 -2083.538
aic 2955.0837 4204.3934 2950.1725 4198.4833 2954 1204 4202.5388 29499263 4198.5174 2943 5166 4191.0759
bic 2991.3389 4255.573 2991.607 4255.3495 2995.5549 4259.405 2991.3608 4255.3836 2995.3097 4259.3153
N 1312 2179 1312 2179 1312 2179 1312 2179 1312 2179
Legend: pt; Fp<05; <01

Source: Author’s own calculation.

Table 4: Robustness check — clustering, reach and small-world properties; patent applications,
time lag (t+1)

Variables Estimation results
Baseline Model Model (1) Model (Il) Model (Ill) Model (IV)

Fixed Random Fixed Random Fixed Random Fixed Random Fixed Random

effects effects effects effects effects effects effects effects effects effects
firmage 00994378 00829882 03733312 7 03220746 00423757 00460507 03259915 02808188 02264873 01932762
firmage_sq -00053489 -.00034804 -.00105358 -.00081466 -.00041663 -.00026863 -00089849 -.0006686 -00064746 -00043355
coopcnt -01811569 01934418 -01818331 01694328 -01846864 01938771 -01811078 01728223 -01511595 02101314
coopfund .000009877 00001396 00001412 00001792 00001004 0000141 000017 00002073 .00001719 .00002084
nw_size 29475613 ™" -3.1684482" 33421082 -3.5298766™" -3.2089678™ -3.3685447 ™™ 4.2628185™" 44885137 A43673734™ 46031774 ™
nw_density -2 8696261 ™ -2.88051™ 48546 50429677 -26009588 " -26603955" 414613097 -43348133™ 1166331 -1.366484
nw_wclust 1.5707897 **  1.5695806 ™ 75314347 ** 7.3631523 ™
nw_areach 11411269 08427262 -10156439 *  -98847287 ©
inter_sw 81154585 B1613743™*  32792205** 32349863 ™
_cons 10926888 ™ 11293445 35436373 4183161 85300282 * /94940078 * 18453871 2419253 32542514 * 3218743 *
In_r_cons -09498949 -09417647 -0.093793 -08599318 -08131833
In_s_cons -91609186 ™ -91730297 91830232 ™ -92419009 ™ -92832271™
chi2 15736744 17.259548 30.991406 33142983 16.399322 17 688214 44277213 46.67405 53675483 55.881409
I -1674.14 2339276 -1665.82 -2330.532 -1673.883 2339127 -1659.293 -2323 877 -1655.568 -2320.24
aic 3362.2801 4696 5511 3347 6395 4681.064 3363.7664 4698 2529 3334 5855 4667 7534 3331.1359 4664 48
bic 33996523 4748 645 33903506 47389461 3406 4775 4756.135 3377 2966 47256355 33845248 47339386
N 1539 2412 1539 2412 1539 2412 1539 2412 1539 2412

Legend: "p<.1; p<.05; "p<.01
Source: Author’s own calculation.

To start with, the estimation results are robust for both time lags (Table 3, time lag t+2;
Table 4, time lag t+1) and for both estimation techniques (i.e. random effects & fixed
effects models). Coefficient estimates for network clustering are negative and highly
significant at the 0.01 level (cf. Table 3, Model IV) and the 0.05 level (cf. Table 4,
Model IV), respectively. Similarly, estimation results for average path length are
negative and show a strong significance at the 0.01 level (cf. Table 3, Model IV) and the
0.1 level (cf. Table 4, Model IV), respectively. Finally, coefficient estimates for the

small-world indicator are positive, consistent over all specifications and highly

24



significant at the 0.01 level. In summary, our estimation results provide empirical

support for Hypotheses H1 & H3 whereas Hypothesis H2 has to be rejected.

6 Discussion, limitations and further research

Our results for the overall average path lengths (Hypothesis H1) are as expected and in
line with previous empirical findings (Schilling & Phelps, 2007; Fleming, et al. 2007).
Both studies report a negative’' and, in most cases, highly significant correlation
between the average path length at the overall network level and firm innovativeness.
Schilling & Phelps (2007) pay little attention to these individual effects. Fleming et al.
(2007, p. 949) conclude: “Shorter path length [...] correlate with an increase in

subsequent patenting”.

It is interesting to note that our findings for the individual clustering are not in line as
initially expected with our theoretical considerations (Hypothesis H2) but in line with
previous empirical findings. Schilling & Phelps (2007, p. 1122) report in four out of six
empirical settings a negative but not significant. Similarly, the results of Fleming and
colleagues (2007, p. 948) reveal negative and significant coefficient estimates. This is

an issue that clearly calls for clarification and further research.

Last but not least, we take a look at a network’s small-world properties. Firstly, the
descriptive analysis shows that the German laser industry network clearly fulfills the
small-world criteria according to Watts & Strogatz (1998). Moreover, results are
suggestive of an increasing solidification of small-world properties over time. Secondly,
in our estimation results clearly support Hypothesis H3 and provide empirical evidence
for a positive relatedness between a network’s small-world nature and a firm’s
subsequent innovativeness. This is in sharp contrast to the findings of Fleming et al
(2007, p. 949); the authors conclude: “The small world effect is not observed in our
data”. However, our results are in line with previous findings by Schilling & Phelps
(2007) who summarize their findings as follows: “[...] networks that have both the high
information transmission capacity enabled by clustering, and the high quantity and
diversity of information provided by reach, should facilitate greater innovation by firms

that are members of the network” (Schilling & Phelps 2007, 1124).

>’ Note that Fleming and colleagues (2007) use an inverse path length measure. Thus, the coefficient

estimates are positive.
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This empirical analysis has several important implications for both managers and policy
makers. Most noteworthy is the recognition that the network topology itself seems to
affect the innovative performance of firms at the micro level in multiple ways. In other
words, analyzing firm-specific cooperation patterns is necessary but not sufficient for a
comprehensive understanding of a firm’s innovative performance. Another important
implication is that regional innovation networks can significantly gain in effectiveness
when they concurrently show high clustering and short average path lengths. Moreover,
regional networks should have a certain degree of openness in a sense that trans-

regional linkages should be established and maintained.

Like any empirical study this paper also has some appreciable limitations. Firstly, the
database has to be extended in all three areas: industry data, network data and
innovation data. This encompasses not only data gathering but also the inclusion of
more sophisticated indicators. Work has already begun on two areas. On the one hand,
we have started to gather data on non-funded strategic alliances and we are currently
including the new information in our database. On the other hand, we started
systematically exploring data on product launches based on several archival raw data
sources in order to gain a more appropriate indicator for firm innovativeness. Secondly,
more sophisticated empirical methods are needed to address some of the empirical
limitations of our study. For instance, the conditional fixed effects estimation approach
which is usually implemented in standard statistic software packages (e.g. STATA) has
been criticized (Schilling & Phelps 2007). The implementation and use on an
unconditional estimation procedure according to Allison & Waterman (2002) is
currently work in progress. Thirdly, some more specific issues need to be addressed. On
the one hand, we a curious to understand why our empirical findings for network
clustering do not confirm our initial theoretical expectations. On the other hand, we
have to address the bipartite nature of the networks more explicitly. Both issues clearly
call for clarification in future research. Finally, not only a network’s small world nature
but also an in-depth analysis of other types of large scale network characteristic are still
widely unexplored. Particularly, core-periphery patterns (Borgatti & Evert 1999; Rank,
et al. 2006) of large-scale innovation networks provide promising opportunities for

further research. These challenges constitute the next steps on our research agenda.
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