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Abstract
This paper empirically explores the roles of inventor-specific knowledge flows, spillovers from inter-organization
innovation collaboration and agglomeration externalities in a firm?s innovation performance. Our panel data from 351
innovating firms for the years 2001?2012 suggest that patentable ideas developed in firms tend to be strongly linked to
the mobility of individual inventors. Generally, benefits accruing to a firm from inventor?s knowledge pool do not remain
in the organization after inventor has moved out. However, in certain technology fields, knowledge is more fluid, and
inventor leaving a firm does not affect its innovation performance. In other words, hiring inventor generates longer-term
benefits for a firm as a part of mobile inventor?s knowledge is absorbed by the hiring organization before inventor moves
to another firm. We further find that particularly innovation coopetition (i.e., collaboration with a firm?s competitors) is an
important source of knowledge spillovers. Furthermore, the magnitude of overall localized innovation activity positively
relates to the firm?s innovation performance providing support for agglomeration externalities.

Jelcodes:L20,O30
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Mobility of ideas for innovation: The role  

of inventor-specific knowledge flows 

 

1. INTRODUCTION 

The role of knowledge spillovers or externalities in the generation of innovation has gained 

substantial attention in the economics and management literature (see, e.g., Jaffe et al., 

1993; Giuri and Mariani, 2013; Tambe and Hitt, 2014). The questions of the magnitude of 

knowledge spillovers and the channels via which knowledge spills from one organization to 

another are not only of interest to academics. These questions are also highly policy relevant 

as externalities provide a major justification for the allocation of publicly funded R&D 

subsidies. The argument favoring government R&D subsidies states that without these 

subsidies firms underinvest in innovation activities as they cannot fully appropriate returns 

from the output of their investment (i.e., knowledge concerning the production of new 

goods or services) due to non-rival nature of knowledge. In other words, a firm generating 

new knowledge cannot, at least not completely, preclude other parties to also use its 

privately produced knowledge for commercial purposes (e.g., via imitation). 

The trend in the empirical literature on knowledge externalities has developed from the 

aggregate or regional level analysis (see, e.g., Jaffe et al., 1993) towards microeconomic 

approaches capturing the transfer of knowledge at the firm level and at the innovator level 

(see, e.g., Almeida and Kogut, 1999). Closest to our study are the empirical explorations of 

Ejsing et al. (2013) and Kaiser et al. (2015) using both data from the population of Danish 

R&D active firms between the years 1999 and 2004. Eijsing et al. (2013) finds that hiring 

researcheƌƐ ĨƌŽŵ ƵŶŝǀĞƌƐŝƚŝĞƐ ĐůĞĂƌůǇ ƉŽƐŝƚŝǀĞůǇ ŝŵƉĂĐƚƐ ŽŶ Ă Ĩŝƌŵ͛Ɛ ƉĂƚĞŶƚŝŶŐ͘ TŚĞ ƐƚƵĚǇ ŽĨ 

Kaiser et al. (2015) further concludes that labor mobility of R&D workers among firms 
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ŝŶĐƌĞĂƐĞƐ ƐƚĂƚŝƐƚŝĐĂůůǇ ƐŝŐŶŝĨŝĐĂŶƚůǇ ĨŝƌŵƐ͛ ƚŽƚĂů ƉĂƚĞŶƚŝŶŐ ŝĨ ĞŝƚŚĞƌ ŽĨ ƚŚĞ ĨŝƌŵƐ ŝŶvolved has a 

history of patenting activity. Both studies measure the mobility of R&D workers by the 

number of R&D workers joining a firm at time t but were employed by another organization 

at time t-ϭ ;ŝ͘Ğ͕͘ ͞ũŽŝŶĞƌƐ͟Ϳ ĂŶĚ ďǇ ƚŚĞ ŶƵŵďĞƌ ŽĨ RΘD ǁŽƌŬĞƌƐ ƚŚĂƚ worked for the firm at 

time t-ϭ ďƵƚ ǁĞƌĞ ĞŵƉůŽǇĞĚ ďǇ ĂŶŽƚŚĞƌ ŽƌŐĂŶŝǌĂƚŝŽŶ Ăƚ ƚŝŵĞ ƚ ;ŝ͘Ğ͕͘ ͞ůĞĂǀĞƌƐ͟).  

Our study contributes to this stream of literature by using inventor-specific patent pool as a 

proxy for the magnitude of knowledge (generating patentable ideas) carried by mobile 

inventors. We investigate whether i) the knowledge pool of inventors is sticky and deeply 

attached to them and thus moves in to and out from a firm with inventors, ii) the knowledge 

pool of inventors is fluid such that a part of inventor͛s knowledge important for Ă Ĩŝƌŵ͛Ɛ 

patenting activities are absorbed by the firm and remains in it after inventor has left, or iii) 

knowledge base essential for the development of patentable ideas in firms tends to be 

organization-specific. Unlike the previous studies, our firm-level empirical study also 

simultaneously controls for knowledge spillover mechanisms at the innovator level via their 

mobility, at the firm level via the innovation collaboration of a firm with external parties, and 

at the regional level via the magnitude, diversity and concentration of localized innovation 

activities. We aim at answering to the questions of what are the channels of mobility of 

patentable ideas or knowledge generating innovations and whether and how they vary by 

different technology fields.  

We use data concerning the patent filings of the Finnish companies acquired from the EPO 

worldwide statistical database matched with the firm-level financial statements and other 

background data. The combined dataset used in the estimations includes 351 innovating 

firms and 2536 observations from the years 2001ʹ2012. We find that knowledge flows 

generating patentable ideas tend to be strongly linked to the mobility of individual 
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inventors. Generally, benĞĨŝƚƐ ĂĐĐƌƵŝŶŐ ƚŽ Ă Ĩŝƌŵ ĨƌŽŵ ŝŶǀĞŶƚŽƌ͛Ɛ ŬŶŽǁůĞĚŐĞ ƉŽŽů ĚŽ ŶŽƚ 

remain in the organization after inventor has moved out. However, in certain technology 

fields (i.e., chemicals and pharmaceuticals and mechanical engineering), knowledge is more 

fluid, and inventor leaving a firm does not affect its innovation performance. In other words, 

hiring inventor generates longer-ƚĞƌŵ ďĞŶĞĨŝƚƐ ĨŽƌ Ă Ĩŝƌŵ ĂƐ Ă ƉĂƌƚ ŽĨ ŵŽďŝůĞ ŝŶǀĞŶƚŽƌ͛Ɛ 

knowledge is absorbed by the hiring organization before inventor moves to another firm. 

Our findings also provide support for the literature arguing that Ă Ĩŝƌŵ͛Ɛ patent stock reflects 

knowledge base it can use for generating future patentable iĚĞĂƐ͕ ĂŶĚ ƚŚƵƐ Ă Ĩŝƌŵ͛Ɛ ƉĂƐƚ 

patenting activity is positively related to its current patenting (see, e.g., Blundell et al, 1995, 

ϮϬϬϮ͖ CƌĞƉŽŶ ĂŶĚ DƵŐƵĞƚ͕ ϭϵϵϳͿ͘ WĞ ĚĞǀĞůŽƉ ƚŚŝƐ ŝĚĞĂ ĨƵƌƚŚĞƌ ďǇ ĚŝƐƚŝŶŐƵŝƐŚŝŶŐ Ă Ĩŝƌŵ͛Ɛ 

intra-house patenting activities from its collaborative patenting with different parties. Our 

estimation results suggest that particularly innovation coopetition (i.e., collaboration with a 

Ĩŝƌŵ͛Ɛ ĐŽŵƉĞƚŝƚŽƌƐͿ ŝƐ ĂŶ ŝŵƉŽƌƚĂŶƚ ƐŽƵƌĐĞ ŽĨ ŬŶŽǁůĞĚŐĞ ƐƉŝůůŽǀĞƌƐ͘ FƵƌƚŚĞƌŵŽƌĞ͕ ǁĞ ĨŝŶĚ 

that even after controlling for knowledge flows at the inventor-level and the firm-level (i.e., 

ďŽƚŚ ƚŚĞ Ĩŝƌŵ͛Ɛ Žwn patent stock and spillovers from its innovation collaborators) the 

magnitude of overall localized innovation activity (i.e., agglomeration externalities) positively 

ƌĞůĂƚĞƐ ƚŽ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͘ 

 

2. MOBILITY OF INNOVATIONS Ȃ CONCEPTUAL AND EMPIRICAL 

FRAMEWORK 

The economic and management literature identifies various potential channels of knowledge 

spillovers facilitating innovation: i) inter-firm mobility of employees, ii) innovation 

ĐŽůůĂďŽƌĂƚŝŽŶ ŽĨ Ă Ĩŝƌŵ ǁŝƚŚ ĞǆƚĞƌŶĂů ƉĂƌƚŶĞƌƐ͕ ĂŶĚ ŝŝŝͿ ƐƉŝůůŽǀĞƌƐ ĂƌŝƐŝŶŐ ĨƌŽŵ ĨŝƌŵƐ͛ ůŽĐĂƚŝŽŶĂů 
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proximity, i.e. knowledge spillovers at the regional level. We next discuss these topics and 

generate testable hypotheses for the empirical part of the analysis. 

2.1 Inventor mobility 

Various previously reported studies have emphasized the crucial role of individual inventors 

ŝŶ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝǀĞ ƉĞƌĨŽƌŵĂŶĐĞ ;ƐĞĞ͕ Ğ͘Ő͕͘ GĂǇ Ğƚ Ăů͕͘ ϮϬϬϴ͖ LĂƚŚĂŵ Ğƚ Ăů͕͘ 2012). Though 

a ƉĂƌƚ ŽĨ ŝŶǀĞŶƚŽƌ͛Ɛ ŬŶŽǁůĞĚŐe can be transferred, inventor has skills and abilities that are 

rival in nature, and (s)he carries private knowledge that is not individually transferable. Thus, 

inventor mobility from one firm to another affects R&D capabilities of both the old and new 

employer (Kaiser et. al., 2015). Furthermore, Ejsing et al. (2013) finds that hiring university 

ƌĞƐĞĂƌĐŚĞƌƐ ĐŽŶƚƌŝďƵƚĞƐ ƚŽ Ă Ĩŝƌŵ͛Ɛ ƉĂƚĞŶƚŝŶŐ ĂĐƚŝǀŝƚŝĞƐ͘ Hiring inventors from other 

organizations as a way of learning is also a well-known means exploited by innovative 

companies (Palomeras et al., 2010; Singh and Agrawal, 2011). 

Relatedly, Hoisl (2007) measuring the inventor productivity by the number of patents per 

inventor finds that mobility of inventors (measured by the count of firms for which an 

inventor has worked minus one) increases their productivity but, instead, increase in 

ƉƌŽĚƵĐƚŝǀŝƚǇ ƚĞŶĚƐ ƚŽ ĚĞĐƌĞĂƐĞ ƚŚĞ ŝŶǀĞŶƚŽƌ͛Ɛ ƉƌŽďĂďŝůŝƚǇ ƚŽ ŵŽǀĞ ĨƌŽŵ ŽŶĞ ŽƌŐĂŶŝǌĂƚŝŽŶ ƚŽ 

another. Similarly, the study of Latham et al. (2012) among five different countries (i.e., 

France, Germany, Japan, the UK, and the US) suggests that the average number of patents 

ŐƌĂŶƚĞĚ ƉĞƌ ǇĞĂƌ ;ŽǀĞƌ ŝŶǀĞŶƚŽƌ͛Ɛ ĐĂƌĞĞƌͿ tends to be higher for inventors of which inter-firm 

mobility is higher. Furthermore, their study controls for technological mobility of inventors 

measured by the count of the number of different technological fields in which an inventor 

has worked and the number of changes from one field to another (HHI at the level of six 

broad technological classes used). Their results hint that those inventors that are less 
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technologically mobile or more technologically specialized tend to be more productive than 

others. 

The empirical work of Maliranta et al. (2009) suggests that the mobility of Ă Ĩŝƌŵ͛Ɛ ǁŽƌŬĞƌƐ 

from non-R&D activities to its R&D activities provides a more significant spillover channel 

ďŽŽƐƚŝŶŐ ďŽƚŚ ƉƌŽĚƵĐƚŝǀŝƚǇ ĂŶĚ ƉƌŽĨŝƚĂďŝůŝƚǇ ƚŚĂŶ ƚŚĞ ŵŽďŝůŝƚǇ ŽĨ ĞŵƉůŽǇĞĞƐ ĨƌŽŵ ŽƚŚĞƌ Ĩŝƌŵ͛Ɛ 

RΘD ůĂďƐ ƚŽ ƚŚĞ Ĩŝƌŵ͛Ɛ ŽǁŶ͘ TŚĞǇ ŝŶƚĞƌƉƌĞƚ ƚŚŝƐ ĨŝŶĚŝŶŐ ĂƐ ƚŚĞ ĞǀŝĚĞŶĐĞ ƚŚĂƚ Ă Ĩŝƌŵ͛Ɛ ŽǁŶ 

workers from non R&D activities transmit relevant knowledge that can be utilized without 

ŵƵĐŚ ĞĨĨŽƌƚ ŝŶ ƚŚĞ Ĩŝƌŵ͛Ɛ RΘD ĚĞƉĂƌƚŵĞŶƚ͘ 

The literature has further stressed the importance of mobility of skilled workers as a key 

mechanism generating knowledge spillovers (see, e.g., Matusik and Hill, 1998). Tambe and 

Hitt (2014) provide evidence on the role of the mobility of specialized work-force in the 

transmission of fundamental knowledge for technological progress. Their empirical findings 

indicate that the mobility of information technology (IT) workers among firms notably 

facilitates the diffusion of know-how on the utilization of IT-related innovations and that 

these IT-specific knowledge spillovers further contribute to ƚŚĞ ĨŝƌŵƐ͛ ƉƌŽĚƵĐƚŝǀŝƚǇ ŐƌŽǁƚŚ͘ IŶ 

other words, the movement of IT specialists among firms is a notable source of productivity 

spillovers.  

In summary, the previous literature suggests that the mobility of skilled employees is 

essential for the development, integration and accumulation of knowledge within the 

organization, and it further facilitates organizational learning in their employing 

organizations. Inter-firm mobility of inventors generates an essential stream of knowledge 

transfer between organizations. This applies particularly to tacit knowledge of which transfer 

tends to require face-to-face communications. Unlike previous studies, we aim at detecting 

how the magnitude of inventor-specific knowledge pool of mobile inǀĞŶƚŽƌƐ ĂĨĨĞĐƚƐ Ă Ĩŝƌŵ͛Ɛ 
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innovation performance and whether the mobility of inventors involves spillovers such that 

a part of inventor-specific knowledge generating patentable ideas remains in the firm after 

inventor leaves it. We propose that when inventor enters to or leaves from a firm, there are 

various factors that may impact on whether and how this affects the subsequent innovation 

performance of the firm.  

We suggest that tŚĞ ŝŵƉĂĐƚ ŽĨ ƚŚĞ ŵŽďŝůŝƚǇ ŽĨ ŝŶǀĞŶƚŽƌƐ ŽŶ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵance 

depends largely on the type of knowledge that is crucial for innovation and transferred via 

the inventors as well as on the importance of firm-specific accumulated knowledge for the 

Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͘ WĞ ŝĚĞŶƚŝĨǇ ƚŚƌĞĞ ĐĂƐĞƐ ŽĨ ƚŚĞ ƌĞůĂƚŝŽŶƐŚŝƉ ďĞƚween different 

ƚǇƉĞƐ ŽĨ ŬŶŽǁůĞĚŐĞ ĂŶĚ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͘ FŝƌƐƚ͕ sticky inventor-specific 

knowledge means that the knowledge base of inventors moving into a firm (out from the 

ĨŝƌŵͿ ŚĂƐ Ă ƉŽƐŝƚŝǀĞ ;ŶĞŐĂƚŝǀĞͿ ƌĞůĂƚŝŽŶƐŚŝƉ ǁŝƚŚ ƚŚĞ Ĩŝƌŵ͛Ɛ ƐƵďƐĞƋuent innovation 

performance. Second, fluid knowledge refers to the case in which the knowledge base of 

ŝŶǀĞŶƚŽƌƐ ŵŽǀŝŶŐ ŝŶƚŽ Ă Ĩŝƌŵ ŝƐ ƉŽƐŝƚŝǀĞůǇ ƌĞůĂƚĞĚ ƚŽ ƚŚĞ Ĩŝƌŵ͛Ɛ ƐƵďƐĞƋƵĞŶƚ ŝŶŶŽǀĂƚŝŽŶ 

performance, while the order of magnitude of inventors moving out from the firm does not 

ŶŽƚĂďůǇ ĂĨĨĞĐƚ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͘ TŚŝƌĚ͕ firm-specific knowledge means that 

the innovation performance of a firm is not affected by the mobility of inventors. 

Knowledge based theory of the firm identifies intangible firm-specific knowledge as a key 

ĐŽŵƉŽŶĞŶƚ ŽĨ ƚŚĞ Ĩŝƌŵ͛Ɛ ĐŽŵƉĞƚŝƚŝǀĞ ĂĚǀĂŶƚĂŐĞ ;“ƉĞŶĚĞƌ͕ ϮϬϬϲͿ͘ TŚĞ ůŝƚĞƌĂƚƵƌĞ ƐƚƌĞƐƐĞƐ 

particularly the role of tacit knowledge that is highly complex, impossible to codify, deeply 

attached to people and difficult to transmit and imitate (see, e.g., Kogut and Zander, 1992). 

The degree of how sticky - Žƌ ͞ŚŽǁ ĐŽƐƚůǇ ƚŽ ĂĐƋƵŝƌĞ͕ ƚƌĂŶƐĨĞƌ ĂŶĚ ƵƐĞ ŝŶ Ă ŶĞǁ ůŽĐĂƚŝŽŶ͟ - 

ŝŶǀĞŶƚŽƌ͛Ɛ tacit knowledge is, determines its transferability to the R&D personality or 

inventors employed by the ŝŶǀĞŶƚŽƌ͛Ɛ ŶĞǁ firm (see, e.g., von Hippel, 1994). Fluid knowledge 
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ĐĂŶ ďĞ ƉĂƐƐĞĚ ĨƌŽŵ ŽŶĞ ƉĞƌƐŽŶ ƚŽ ĂŶŽƚŚĞƌ͕ ǁŚŝůĞ ƐƚŝĐŬǇ ŬŶŽǁůĞĚŐĞ ͞ƐƚŝĐŬƐ ǁŝƚŚ ĂŶ 

ŝŶĚŝǀŝĚƵĂů͟ ;ƐĞĞ͕ Ğ͘Ő͕͘ LŝĞďŽǁŝƚǌ͕ ϮϬϬϲͿ͘ 

When inǀĞŶƚŽƌ͛Ɛ knowledge is sticky, hiring the ŝŶǀĞŶƚŽƌ ŝƐ ůŝŬĞůǇ ƚŽ ŝŶĐƌĞĂƐĞ ƚŚĞ Ĩŝƌŵ͛s 

innovation performance both due to her/his personal qualities (i.e., know-how, skills and 

problem-solving abilities) as well due to tacit knowledge (s)he has learned in her/his 

previous organization. Also, in this case, when the inventor leaves the company, this is likely 

ƚŽ ŐĞŶĞƌĂƚĞ Ă ĚĞĐůŝŶĞ ŝŶ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͘ FƵƌƚhermore, the more 

productive the inventor a firm hires (loses) is, the larger an increase (dĞĐůŝŶĞͿ ŝŶ Ă Ĩŝƌŵ͛Ɛ 

innovation performance. In other words, knowledge is sticky inventor-specific and its 

mobility strongly linked to the mobility of inventors. There are still knowledge spillovers if 

inventor entering the firm increases more its innovation performance than inventor with a 

ƐŝŵŝůĂƌ ŬŶŽǁůĞĚŐĞ ďĂƐĞ ůĞĂǀŝŶŐ ƚŚĞ Ĩŝƌŵ ĚĞĐƌĞĂƐĞƐ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͘ 

Whether the knowledge and ideas of an inventor are fluid and relatively easily transferable, 

it seems credible that inventors entering the firm increase the innovation of their new 

employer but the innovation performance of a firm from which an inventor leaves from, may 

not be as ƐƚƌŽŶŐůǇ ĂĨĨĞĐƚĞĚ͘ TŚŝƐ ŵĂǇ ŚĂƉƉĞŶ ĂƐ ƐŽŵĞ ŽĨ ƚŚĞ ŝŶǀĞŶƚŽƌ͛Ɛ ĞƐƐĞŶƚŝal knowledge 

for generating new innovation can be absorbed by the firm before her skills and problem-

solving abilities move to a new organization. In this case, knowledge genuinely spills via the 

mobility of inventors: inventor moving into the firm is likely to increase its innovation 

performance, while the loss of an inventor holding such knowledge may not have notable 

ŝŶĨůƵĞŶĐĞ ŽŶ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ŽƵƚƉƵƚ͘  

Yet another possibility is that knowledge required for innovation tends to be strongly firm-

speĐŝĨŝĐ͘ TŚŝƐ ŵĂǇ ďĞ ƚŚĞ ĐĂƐĞ ŝĨ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ activities and output are, by and large, 
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based on the accumulated firm-specific knowledge and expertise, and mobility of individual 

inventors does not substantially affect to it. In other words, neither hiring new inventors to 

the firm nor the mobility of inventors from the firm to another organization has no 

substantial influence on thĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ. This reflects the case when 

there is no substantial knowledge spillovers transmitted via the mobility of inventors. 

There is also a link between different types of knowledge generating patentable ideas and 

different types of organizational learning mechanisms. Exploratory learning is based on a 

Ĩŝƌŵ͛Ɛ ĞǆƚĞƌnal acquisition of knowledge, its subsequent internalization and the development 

of new competence base (see, e.g., March, 1991; Turner and Makhija, 2006). Exploitative 

learning ƌĞĨĞƌƐ ƚŽ ƵƐŝŶŐ Ă Ĩŝƌŵ͛Ɛ ĞǆŝƐƚŝŶŐ competence base for upgrading and refining the 

firm͛Ɛ existing resources (e.g., a Ĩŝƌŵ͛Ɛ ŝŶ-house R&D activities relying on its accumulated 

internal R&D capabilities). From the perspective of organizational learning literature, fluid 

knowledge carried by mobile inventors relates rather to the exploratory learning strategy, 

while firm-specific knowledge use in innovation relies heavily on the exploitative learning 

strategy. When knowledge is sticky inventor-specific, a firm may internalize such knowledge 

only by keeping the hired inventor holding knowledge crucial for the creation of patentable 

ideas.  

We consequently propose the following three hypotheses: 

Hypothesis 1 ;͞“ƚŝĐŬǇ ŝŶǀĞŶƚŽƌ-specific knowledge): The larger the knowledge pool of an 

ŝŶǀĞŶƚŽƌ ĞŶƚĞƌŝŶŐ ;ůĞĂǀŝŶŐͿ ƚŚĞ Ĩŝƌŵ͕ ƚŚĞ ŵŽƌĞ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ ŝŶĐƌĞĂƐĞƐ 

(decreases). 
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Hypothesis 2 ;͞FůƵŝĚ ŬŶŽǁůĞĚŐĞΗͿ: The larger the knowledge pool of an inventor entering the 

Ĩŝƌŵ͕ ƚŚĞ ŵŽƌĞ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ Ɖerformance increases. The mobility of an inventor from 

a firm ĚŽĞƐ ŶŽƚ ĂĨĨĞĐƚ ƚŚĞ Ĩŝƌŵ͛Ɛ innovation performance.  

Hypothesis 3 ;͞Fŝƌŵ-ƐƉĞĐŝĨŝĐ ŬŶŽǁůĞĚŐĞ͟Ϳ: The mobility of an inventor to a firm or from a firm 

ĚŽĞƐ ŶŽƚ ĂĨĨĞĐƚ ƚŚĞ Ĩŝƌŵ͛s innovation performance.  

Knowledge spillovers arising from the inter-firm mobility of employees is measured by the 

inflow of (potentially patentable) knowledge at time t to firm i via the vector of inventors j 

entering the firm from other firms k:  

ܫ̴ܸܰܫ̴ܮܮܫܲܵ ܰ௧ ൌ  ܲ௧ିଵ  

The SPILL_INV_IN variable is the total patent pool (i.e. cumulative sum of patent applications 

at time t-1) of inventors which moved to a firm at time t. It captures the transfer of inventor-

specific knowledge moving from one firm to another.  

It is also possible that mobile inventors transfer part of the knowledge base of their previous 

employer to the new one. We therefore test also whether there is a relationship between 

ƚŚĞ ŵŽďŝůĞ ŝŶǀĞŶƚŽƌƐ͛ ƉƌĞǀŝŽƵƐ ĞŵƉůŽǇĞƌƐ͛ ƉĂƚĞŶƚ ƉŽŽů ĂŶĚ ƚŚĞ ŶĞǁ ĞŵƉůŽǇĞƌ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ 

performance. The transfer of firm-specific knowledge via mobile inventors is measured by 

using the variable SPILL_FIRM_IN that captures ƚŚĞ ƉĂƚĞŶƚ ƉŽŽů ŽĨ ŝŶǀĞŶƚŽƌƐ͛ ƉƌĞǀŝŽƵƐ 

employers (i.e. cumulative sum of patent applications of the previous employers of mobile 

inventors at time t-1). This firm-specific measure do not include the patents of the inventors 

moving into a firm as we aim at separating inter-firm transfer of inventor- and firm-specific 

knowledge flows.  
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The second inventor-specific measure captures the outflow of knowledge at time t-1 from 

firm i via the vector of inventors j leaving the firm:  

̴ܷܱܮܮܫܲܵ ܶ௧ ൌ  ܲ௧ିଵ  

The SPILL_OUT variable is the sum of cumulative number of patent applications of inventors 

leaving the firm. It provides a proxy for innovator level knowledge that spills out from a firm 

when an innovator leaves.  

Our assumption is that innovation related to different technologies may differ in terms of 

inventor- and firm-specificity of knowledge required for them. Given the lack of prior 

research on the topic, the inventor- and firm-specificity of knowledge in different technology 

fields is an empirical question. We undertake estimations separately by each of the six 

technology classes
1
. In these estimations, the estimated coefficients of the SPILL_INV_IN 

variable reveal in which technology fields innovators transmit knowledge generating further 

patentable innovations. The estimated coefficients of the SPILL_OUT variable shows whether 

(patentable) knowledge related to different technology fields tends to stay or leak out from 

the firm with the innovators leaving the company. Table 1 outlines the sign of the estimated 

coefficients of the SPILL_INV_IN and SPILL_OUT variables in relation to the type of 

transferred knowledge. 

                                                           
1 The definitions of the technology classes are based on OECD (1994) and Mancusi (2003). Technology classes 
are 1 ”Electrical engineering”, 2 ”Instruments”, 3 ”Chemicals and pharmaceuticals”, 4 ”Process engineering”, 5 
”Mechanical engineering” and 6 ”Consumer goods and civil engineering”. Technology class 1 includes patent 
applications related to electronic devices and electrical engineering, audio visual technology, 
telecommunications, information technology and semiconductors; technology class 2 optics, control and 
measurement technology and medical technology; technology class 3 organic chemistry, macromolecular 
chemistry and polymers, pharmaceuticals and cosmetics, biotechnology, materials and metallurgy and food and 
agriculture; technology class 4 chemical engineering, surfaces, materials processing, thermal processes, oil and 
basic material chemistry and environmental technology; technology class 5 machines and tools, engines and 
pumps, mechanical elements, handling, food processing, transport, nuclear engineering and space technology 
and technology class 6 consumer goods and civil engineering. 
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- TABLE 1 HERE - 

 

2.2 Firmǯs own past patenting and spillovers from innovation collaboration 

Previous studies suggest that Ă Ĩŝƌŵ͛Ɛ ƐƚŽĐŬ ŽĨ its past patents reflects knowledge base it can 

use for generating future patentable iĚĞĂƐ͕ ĂŶĚ ƚŚƵƐ Ă Ĩŝƌŵ͛Ɛ past patenting activity is 

positively related to its current patenting. (see, e.g., Blundell et al, 1995, 2002; Crepon and 

DƵŐƵĞƚ͕ ϭϵϵϳͿ͘ AůƐŽ͕ ŝŵƉŽƌƚĂŶƚ ŬŶŽǁůĞĚŐĞ ĨŽƌ ƚŚĞ ŐĞŶĞƌĂƚŝŽŶ ŽĨ ŝŶŶŽǀĂƚŝŽŶ ŵĂǇ ͞ƐƉŝůů͟ ĨƌŽŵ 

one firm to another during the R&D collaboration. Generally, according to the resource 

based view of the management literature, a firm seeks collaboration with external partners 

that provide complementary inputs for the firm (see, e.g., Miotti and Sachwald, 2003). A 

Ĩŝƌŵ͛Ɛ ũŽŝŶƚ ŝŶŶŽǀĂƚŝŽŶ ĂĐƚŝǀŝƚies with other firms, research institutes and universities may 

provide access to knowledge and ideas leading to further innovation.  

Relatedly, the strategic management and industrial organization literature has also explored 

ƚŚĞ ĨŝƌŵƐ͛ ŬŶŽǁůĞĚŐĞ ĂĐƋƵŝƐŝƚŝon via collaboration with various parties such as customers, 

other firms and research institutes and universities. In this literature, the focus has been 

ƌĂƚŚĞƌ ŝŶ ƚŚĞ ƌĞůĂƚŝŽŶƐŚŝƉ ďĞƚǁĞĞŶ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ ĂŶĚ ŝƚƐ ŬŶŽǁůĞĚŐĞ 

search strategy than in the role of knowledge spillovers (see, e.g, Laursen and Salter, 2006; 

Love et al., 2013). 

We go into more detail in our exploration of the role ŽĨ Ă Ĩŝƌŵ͛Ɛ own past innovation 

activities ŝŶ ƚŚĞ Ĩŝƌŵ͛Ɛ ĐŽŶƚĞŵƉŽƌĂƌǇ ŝŶŶŽǀĂƚŝŽŶ ďĞŚĂǀŝŽƌ by controlling not only the Ĩŝƌŵ͛Ɛ 

own patent stock but also spillŽǀĞƌƐ ĨƌŽŵ ƚŚĞ ƉĂƚĞŶƚƐ ƐƚŽĐŬƐ ŽĨ ƚŚĞ Ĩŝƌŵ͛Ɛ ĞǆƚĞƌŶĂů ŝŶŶŽǀĂƚŝŽŶ 

collaborators (i.e, competitors, other firms, and universities and research institutes). We 
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assume that the greater the knowledge stock of the innovation partners of a firm, the 

greater the variety of ideas and knowledge that ͞ƐƉŝůůƐ͟ ŝŶƚŽ ƚŚĞ Ĩŝƌŵ.  

We further distinguish inter-firm collaboration between the competitors (i.e., collaborating 

firms active in the same industry with a firm, measured at 3-digit level) and other firms (i.e., 

collaborator firms that are active in different industries than a firm). In other words, we aim 

at investigating to what extent innovation coopetition vs. inter-industry innovation 

collaboration ĞŶŚĂŶĐĞƐ Ă Ĩŝƌŵ͛Ɛ subsequent innovation performance. At least partially 

overlapping technology base of a firm with its coopetition partner may facilitate exchange of 

ŝŶĨŽƌŵĂƚŝŽŶ ĂŶĚ ŝŶĐƌĞĂƐĞ ŵƵƚƵĂů ƵŶĚĞƌƐƚĂŶĚŝŶŐ ŽĨ ƉĂƌƚŶĞƌƐ ĂƐ ǁĞůů ĂƐ ƚŚĞ ĨŝƌŵƐ͛ ability to 

absorb and use information they obtain from one another. Thus, innovation coopetition may 

potentially result in more patentable future ideas for a firm than innovation collaboration 

with those partners that are more distant in the end-user markets or technology-wise. On 

the other hand, when competitors do joint R&D they may exchange less information than in 

other collaborative innovation partnerships. This may happen as competitors are likely to 

have an incentive to minimize other knowledge flows benefiting the competitor in the 

product markets than those necessary for innovation collaboration. 

Furthermore, universities and research institutes may provide important scientific or 

technological knowledge foƌ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉƌŽĐĞƐƐ. The literature presents various 

reasons why firms collaborate with research organizations such as access to state-of-the-art 

information, solutions to technical problems and outsourcing R&D (see, e.g., Geisler, 2001; 

Wang and Shapira, 2012). Relatedly, the empirical study of Eijsing et al. (2013) suggests that 

ŶĞǁůǇ ŚŝƌĞĚ ƌĞƐĞĂƌĐŚĞƌƐ ĨƌŽŵ ƵŶŝǀĞƌƐŝƚŝĞƐ ŶŽƚĂďůǇ ĐŽŶƚƌŝďƵƚĞ ƚŽ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ 

performance. It thus seems credible that both innovation collaboration and innovation 
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coopetition generate knowledge spillovers but the importance and magnitude of these 

spillovers, compared to another, is an empirical question. 

The above discussion generates two empirically testable hypotheses: 

Hypothesis 4 a. The larger the knowledge base or patent pool of a firm, the greater ƚŚĞ Ĩŝƌŵ͛Ɛ 

innovation performance.  

Hypothesis 4 b. The larger the knowledge bases or patent pools ŽĨ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ 

partners, ƚŚĞ ŐƌĞĂƚĞƌ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͘  

We use four variables for measuring ƚŚĞ ŵĂŐŶŝƚƵĚĞ ŽĨ Ĩŝƌŵ͛Ɛ ƉĂƐƚ ƉĂƚĞŶƚŝŶŐ ĂĐƚŝǀŝƚŝĞƐ͘ The 

variable PAT_OWN captures Ă Ĩŝƌŵ͛Ɛ ĐƵŵƵůĂƚŝǀĞ ŶƵŵďĞƌ ŽĨ ƉĂƚĞŶƚ ĂƉƉůŝĐĂƚŝŽŶƐ it has filed 

solitarily at time t-1. The variables PATENT_COOP and PATENT_COLLAB capture the 

cumulative number of patent applications ŽĨ Ă Ĩŝƌŵ͛Ɛ past coopetitors and other collaborator 

firms, respectively, at time t-1. The variable PATENT_RES is a cumulative number of patent 

applications of those universities and/or research institutes with which a firm has filed joint 

patent applications in the past. The idea behind generating these variables is that the 

greater the knowledge base of a firm͛s innovation partners, the larger potential knowledge 

spillovers for the firm resulting in patentable ideas. 

 

2.3 Agglomeration externalities 

The geographical agglomeration of organizations has for long been identified as an enabler 

for the localized knowledge sharing (Jacobs, 1969; Marshall, 1920; Panne, 2004). The early 

studies particularly in the fields of geographical economics and applied industrial 

organization concerning knowledge spillovers typically focused on the existence of 
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localization or agglomeration externalities (see, e.g., Jaffe et al., 1993; Döring and 

Schellenbach, 2006). It was argued that geographical agglomeration of organizations (such 

as other firms, universities and research institutes) enabled knowledge to spill over from one 

organization to another, and therefore those regions with more organizations or knowledge 

concentrated were likely to have a higher economic growth than others (see, e.g., Feldman 

and Audrestch, 1999). This happened particularly due to more frequent face-to-face 

communication ʹ that is required for the distribution of tacit knowledge - across 

geographically adjacent firms.  

The agglomeration externality literature suggests thus that the quantity of knowledge and 

ŶĞǁ ŝĚĞĂƐ ŐĞŶĞƌĂƚĞĚ ŝŶ Ă Ĩŝƌŵ͛Ɛ ƌĞŐŝŽŶ ĚĞƚĞƌŵŝŶĞƐ ƚŚĞ ŵĂŐŶŝƚƵĚĞ ŽĨ ůŽĐĂůŝǌĞĚ ŬŶŽǁůĞĚŐĞ 

spillovers available for the firm (see, e.g., Acs et al., 2009). We control for the magnitude of 

local innovation activities by the variable PAT_LOCAL measuring the total number of patent 

applications of other firms (i.e., excluding Ĩŝƌŵ͛Ɛ ŽǁŶ ƉĂƚĞŶƚ ĨŝůŝŶŐƐͿ ŝŶ ƚŚĞ ELY ĐĞŶƚĞƌ2
 in 

which the firm is located at time t-1. Given that we control for Ă Ĩŝƌŵ͛Ɛ ƉĂƐƚ own patenting, 

this variable provides information on the importance of the magnitude of localized 

inŶŽǀĂƚŝŽŶ ĂĐƚŝǀŝƚǇ ĨŽƌ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ. In other words, this variable 

captures the short-term influence of localized agglomeration externalities. 

There has been a dispute about whether agglomeration externalities are rather intra-

industry (i.e., arise from knowledge sharing of firms in the same industry) or inter-industry 

(i.e., arise from knowledge sharing of firms across different industries) though. Marshall 

(1920) argued that knowledge is, by and large, industry-specific. Therefore, regional 

concentration of firms in the same industry tends to generate (intra-industry) knowledge 

                                                           
2 In Finland, regional division is based on the areas of the 15 Centres for Economic Development, Transport and 
the Environment (i.e., ELY Centres) which are responsible for the regional implementation and development 
tasks of the central government. 
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spillovers called (Marshallian) specialization externalities. We approach the question of 

specialization externalities from the point of view oĨ ĨŝƌŵƐ͛ ŝŶŶŽǀĂƚŝŽŶ ĂĐƚŝǀŝƚŝĞƐ measured by 

patent applications in different technology fields. In other words, our underlying idea is that 

ƚŚĞ ƌĞŐŝŽŶĂů ƐƉĞĐŝĂůŝǌĂƚŝŽŶ ŽĨ ĨŝƌŵƐ͛ ŝŶ ŝŶŶŽǀĂƚŝŽŶ ĂĐƚŝǀŝƚŝĞƐ ŝŶ Ă ĐĞƌƚĂŝŶ ƚĞĐŚŶŽůŽŐǇ ĨŝĞůĚ ŵĂǇ 

generate knowledge spillovers facilitating further innovation in the same technology field. 

Our TS index captures the extent of a ƌĞŐŝŽŶ͛Ɛ specialization of innovation in technology C 

across six different technology classes, or the role of Marshallian specialization externalities 

in innovation production (below time index is dropped for simplicity): 

ܶܵோ ൌ ሺ ܲோȀ  ܲோ ሻȀሺ ܲோோ Ȁ   ܲோோ ሻ  

where C denotes technology class and R denotes region. In other words, ܶܵோ measures the 

share of patent applications in technology class C in region R relative to the share of patent 

applications of technology class C of all patent applications. This measure is used in the 

estimations in which the innovation production function is estimated separately for six 

different technology classes. 

The economic literature (see, e.g., Jacobs, 1969; Glaeser et al, 1992; Neffke et al. 2012) 

suggests that there may also be local inter-industry spillovers arising from the variety and 

mix of different ideas across industries (i.e., so called Jacobian diversification externalities). 

In other words, the more diverse the local pool of ideas is, the greater number of 

innovations across industries are likely to be generated. We approach the question of 

diversity of localized ideas ǀŝĂ ƚŚĞ ĨŝƌŵƐ͛ ƉĂƚĞŶƚŝŶŐ ĂĐƚŝǀŝƚŝĞƐ ŝŶ ƚŚĞ ƌĞŐŝŽŶ͘ TŚĞ technological 

diversification (TD) index capturing Jabobian diversification externalities can be written as 

follows (below time index is dropped for simplicity):  
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ோܦܶ ൌ ͳ െ ሺ  ܲோோ Ȁ   ܲோோ ሻ
ଶ
 

The more diversified the patenting applications of a region are across different technology 

classes the closer the value of TD is to 1. This measure is used as an explanatory variable 

both in the estimation of innovation production function for all technologies and in the 

separate estimations of innovation production functions for six different technology classes. 

The specialization and diversification externalities are measured at the regional level 

assuming that knowledge ͞ƐƉŝůůƐ ŽǀĞƌ͟ ǀŝĂ ŝŶƚĞƌĂĐƚŝŽŶ ĂŵŽŶŐ ůŽĐĂůŝǌĞĚ ĨŝƌŵƐ͕ ďƵƚ ǁŝƚŚŽƵƚ 

controlling for the actual connections or collaboration among the firms. This is a rather 

standard approach used in the empirical literature for measuring agglomeration 

externalities. Our data, however, enables us also to detect intra-industry and inter-industry 

spillovers arising from innovation collaboration between firms. The variable PAT_COOP 

measuring the patenting activities ŽĨ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĂƌƚŶĞƌƐ active in the same industry 

with the firm captures also partially intra-industry spillovers or specialization externalities. 

Similarly, the variable PAT_COLLAB measuring the patenting activities ŽĨ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ 

partners active in different industries than the firm captures also partially inter-industry 

spillovers or diversification externalities. When these variables are used as the explanatory 

variables in the estimations, the estimated coefficients of the variables TS and TD show the 

impact of intra-industry and inter-industry knowledge spillovers, respectively, arising from 

other interactions among firms than formal innovation collaboration generating patentable 

innovation. 
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3. DATA 

Our dataset comprises only innovating firms (i.e., those firms that filed at least one patent 

application during the observation period). We also exclude those firms that had no entering 

or leaving inventors in the period of study. In addition, we utilize information on only those 

patent filings in which at least one of the applicants is a company. Our patent dataset covers 

FŝŶŶŝƐŚ ĨŝƌŵƐ͛ patent filings in Europe acquired from the EPO worldwide patent statistical 

database (EPO PATSTAT
3
). This patent database includes information on both inventors and 

applicants of the patent filings. We match the companies included in the patent dataset to 

firm level financial statements and other background data (e.g., industry, geographical 

location, employment) provided by nationwide business registers of Statistics Finland and 

Suomen Asiakastieto Oy
4
. These data are available only for the years 2001ʹ2012, so the final 

combined dataset covers this period.
5
 All firm-specific variables are measured at the group 

level if a company is part of the group. Consistently, we exclude from the mobility variables 

intra-group transitions (e.g., mobility from a parent company to a subsidiary) of innovators. 

In total, our final sample covers 351 firms and 2536 observations.        

Table 2 shows summary statistics of the main dependent and explanatory variables. The 

sample firms filed 3.8 applications per year, on average (the variable PAT). Among 

technology classes, ƚŚĞ ĨŝƌŵƐ͛ annual propensity to file a patent was the highest in electrical 

engineering and process engineering (i.e., about 0.08-0.09). The cumulative sum of patent 

applications of inventors entering a new company (the variable SPILL_INV_IN) was, on 

average, 15, while the outflow of knowledge via leaving inventors (the variable SPILL_OUT) 

was clearly lower, about 7 filed patent application. The average value of the variable 

                                                           
3 For details of the database, see http://www.epo.org/searching/subscription/raw/product-14-24.html. 
4 Suomen Asiakastieto Oy is a leading private provider of firm level financial statement data in Finland.  
5 In calculations of variables related to patent application stocks we are able to utilize, however, a longer (1995–
2012) time period which facilitates us to better take into account past patenting profiles of firms and innovators. 
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“PILLͺFIRMͺIN ŝƐ ϭϱϲ ƌĞĨůĞĐƚŝŶŐ ŶŽƚĂďůĞ ƉĂƚĞŶƚ ƉŽŽůƐ ŽĨ ƚŚĞ ŵŽďŝůĞ ŝŶǀĞŶƚŽƌƐ͛ ƉƌĞǀŝŽƵƐ 

employers. 

- TABLE 2 HERE - 

 

The next four variables in the table illustrate the magnitude of a Ĩŝƌŵ͛Ɛ ŽǁŶ ĂŶĚ ŝƚƐ ƉĂƌƚŶĞƌƐ͛ 

past patenting activities. The mean value of firm͛s own knowledge pool is 36.6 patent 

applications (PAT_OWN), ǁŚŝůĞ ƚŚĞ Ĩŝƌŵ͛Ɛ coopetitors (PAT_COOP), inter-industry 

collaborators (PAT_COLLAB) and university/research institute cooperators (PAT_RES) filed, 

on average, 0.6, 13.0 and 7.7 patents, respectively.  

We further control for the agglomeration externalities by the variables PAT_LOCAL, TD and 

TS. The firm-specific control variables include the change in intangible assets (the variable I), 

the dummy variable for foreign-owned firm (the variable FOREIGN), firm size measured by 

the number of employees in Finland (the variable EMP) and firm age (the variable AGE). 

Furthermore, we also include 15 industry-specific control variables and times dummies for 

each year for the estimated models.  

 

4. EMPIRICAL ANALYSIS 

We first estimate the following innovation production function: 

ܣܲ ܶ௧ ൌ ߙ  ூேಿܮܮܫଵܵܲߙ ௧ିଵ  ிூோெಿܮܮܫଶܵܲߙ ௧ିଵ  ை்௧ିଵܮܮܫଷܵܲߙ  ܣସܲߙ ைܶௐே௧ିଵ ߙହܲܣ ܶைை௧ିଵ  ܣܲߙ ܶை௧ିଵ  ܣܲߙ ோܶாௌ௧ିଵ  ௧ܫ଼ߙ  ܣଽܲߙ ܶைோ௧ିଵ  ோ௧ିଵܦଵܶߙ ߙ σ ௧ܮܱܴܱܶܰܥ   ௧     MODEL Iߝ

where PATit is the number of patent applications of a firm i at time t and CONTROL is a 

vector of other control variables. Given that the dependent variable is a count variable, we 
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use the random effects negative binomial model ʹ that allows overdispersion of the 

dependent variable ʹ for the estimations. 

Table 3 summarizes the estimation results. It appeared that the variables SPILL_INV_IN and 

SPILL_FIRM_IN are highly correlated (rho = 0.87) generating potential multicollinearity 

problem with unstable parameter estimates. We thus first include only one of these 

variables at a time to the model (columns 1 and 2) and then estimate the model with both 

variables (column 3). The estimation results support our hypotheses that mobile inventors 

are a substantial channel of inter-firm knowledge flows. Positive and statistically significant 

coefficient of the variable SPILL_INV_IN emphasizes the importance of inventor-specific 

knowledge transfer (column 1). Also, the estimated coefficient of the variable SPILL_FIRM_IN 

appears to be statistically significant (column 2) though it is more than ten times smaller 

than that of the variable SPILL_INV_IN. The estimated coefficient for the variable 

SPILL_FIRM_IN is not statistically significant though when inventor-specific inter-firm 

knowledge spillovers are controlled for (column 3). These empirical findings hint that the 

inventor-specific knowledge flows dominate the firm-specific knowledge flows from the 

ŝŶǀĞŶƚŽƌƐ͛ ƉƌĞǀŝŽƵƐ ĞŵƉůŽǇĞƌƐ͘ It is not possible, however, to distinguish to what extent the 

ŝŵƉŽƌƚĂŶĐĞ ŽĨ ŵŽďŝůĞ ŝŶǀĞŶƚŽƌ͛Ɛ patent pool reflects his or her personal capabilities and 

ǁŚĂƚ ƉĂƌƚ ŝƐ ŐĞŶĞƌĂƚĞĚ ǀŝĂ ůĞĂƌŶŝŶŐ ĨƌŽŵ ƚŚĞ ŝŶǀĞŶƚŽƌ͛Ɛ ƉƌŝŽƌ ĞŵƉůŽǇĞƌ;ƐͿ͘ 

The importance of inventors leaving a firm for its subsequent innovation performance 

further captures the transfer of inventor-specific knowledge flows. The estimated coefficient 

of the variable SPILL_OUT is negative and statistically significant in all of the estimated 

models. This means that the more prolific the inventor leaving a firm (measured by the 

magnitude of his or hers previous patenting activities), the greater the ĚĞĐůŝŶĞ ŝŶ ƚŚĞ Ĩŝƌŵ͛Ɛ 
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innovation performance.
6
 Our empirical findings indicate that individual inventors play a 

notable role in Ă Ĩŝƌŵ͛Ɛ ƉĂƚĞŶƚŝŶŐ ƉĞƌĨŽƌŵĂŶĐĞ͕ ĂŶĚ ƚŚĂƚ ƚŚĞŝƌ ŵŽďŝůŝƚǇ ĐůĞĂƌůǇ ĂĨĨĞĐƚƐ 

positively to the innovation performance of their new employer and negatively to the 

innovation performance of their old employer. Moreover, as the absolute value of the 

(negative) coefficient for the variable SPILL_OUT is slightly larger than that of SPILL_INV_IN, 

our data suggest that there are no notable benefits from inventor͛s knowledge pool 

remaining in the organization after inventor moves out. The estimations of the model 

comprising all technology fields thus support hypothesis 1, or reflect the features of sticky 

inventor-specific knowledge in the mobility of innovations. 

The estimated coefficient for the variables PAT_OWN and PAT_COOP are also positive and 

statistically significant. The magnitude of the coefficient of PAT_COOP is clearly larger than 

that of PAT_OWN emphasizing the importance of spillovers arising from intra-industry 

innovation collaboration. The estimated coefficient for the variables PAT_COLLAB and 

PAT_RES are not statistically significant suggesting that inter-industry innovation 

collaboration or Ă Ĩŝƌŵ͛Ɛ cooperation with universities or research institutes do not generate 

similarly the transfer of patentable ideas of knowledge across organizations. Our estimation 

results thus provide support for hypothesis 4a, and also partially for hypothesis 4b. 

Furthermore, we find that the estimated coefficient of PAT_COOP is clearly larger than the 

estimated coefficients for variables capturing inventor-specific inter-firm spillovers.
7
 This 

finding suggests that an increase in innovation activities of a Ĩŝƌŵ͛Ɛ coopetition partners 

tends to generate greater innovation spillovers than an increase in the innovation activities 

of mobile inventors. 

                                                           
6 Relatedly, Campbell et. al (2012) find that skilled employees leaving a firm - particularly those joining a spin-
out – negatively influence the firm performance (measured as revenues per employee). 
7 The Wald tests are in all cases statistically significant at p<0.01. 
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PAT_LOCAL which measures the ŵĂŐŶŝƚƵĚĞ ŽĨ ůŽĐĂůŝǌĞĚ ŝŶŶŽǀĂƚŝŽŶ ĂĐƚŝǀŝƚǇ ĨŽƌ ƚŚĞ ĨŝƌŵƐ͛ 

innovation performance is positive and statistically significant. However, our proxy for 

Jacobian diversification externalities (TD) is not statistically significant. These findings hint 

that there are agglomeration externalities even after controlling for inventor and firm-

specific spillovers but they do not appear to link to the localized diversity of ideas or inter-

industry spillovers. Among the control variables, firm size (i.e., the variable EMP) is positive 

and statistically significant indicating that larger firms generate more patent applications 

than smaller ones.  

 

- TABLE 3 HERE - 

 

We further estimate the model presented in the first column of Table 3 with t-2 lagged 

values for the variables SPILL_INV_IN and SPILL_OUT to investigate whether the mobility of 

ŝŶǀĞŶƚŽƌƐ ĂĨĨĞĐƚƐ ĨŝƌŵƐ͛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ ǁŝƚŚ Ă ĚĞůĂǇ͘ TĂďůĞ 4 shows the estimation 

results of this model variation. The greater coefficient of the variable SPILL_IV_IN at time t-1 

than at t-Ϯ ƐƵŐŐĞƐƚƐ ƚŚĂƚ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ ŝƐ ďŽŽƐƚĞĚ ŵŽƌĞ ďǇ ƚŚĞ ƌĞůĂƚŝǀĞůǇ 

recent inflow of inventors. However, the estimated coefficient for SPILL_INV_IN at t-2 is also 

positively and highly statistically significant. Instead, the estimation results concerning the 

variable SPILL_OUT at t-1 and t-2 hint that an inventor leaving a firm tends to reduce the 

Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ ŵŽƌĞ ǁŝƚŚ Ă ƚǁŽ ǇĞĂƌ ůĂŐ ƚŚĂŶ ŽŶĞ ǇĞĂƌ ĂĨƚĞƌ ƚŚĞ ůŽƐƐ ŽĨ ĂŶ 

inventor. 

- TABLE 4 HERE - 
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Second, we empirically analyze whether the dynamics of knowledge spillovers differ across 

six technology classes and what implications different spillover channels have on the ĨŝƌŵƐ͛ 

propensity of patenting in different technology fields. We estimate the following innovation 

production function separately for the six technology classes (k): 

ܣܲ ܶ௧ ൌ ߙ  ܫ̴ܸܰܫ̴ܮܮܫଵܵܲߙ ܰ௧ିଵߙଶ̴ܷܱܵܲܮܮܫ ܶ௧ିଵ  ܣଷܲߙ ைܶௐே௧ିଵ  ܣସܲߙ ܶைை௧ିଵ ߙହܲܣ ܶை௧ିଵ  ܣܲߙ ோܶாௌ௧ିଵ  ௧ܫߙ  ܣ଼ܲߙ ܶைோ௧ିଵ  ோ௧ିଵܦଽܶߙ ߙ σ ܶ ܵ௧ିଵ  ߙ σ ௧ܮܱܴܱܶܰܥ  ௧ߝ      MODEL II 

 

Here, the dependent variable PATikt is a dummy variable which is 1 if a firm has applied for a 

patent in technology k in year t and 0 otherwise. We further also control for the localized 

specialization of innovation in technology class k by the variable TS.
8
 We use the random 

effects probit model for the estimations as the number of patent applications per firm is 

typically either 0 or 1. Consequently, for most technology fields, the dependent variable 

does not have sufficient count variable structure to allow the estimations of the negative 

binomial model. Table 5 presents the estimation results. 

The estimation results of the model comprising all technologies presented in Tables 3-4 

suggest that knowledge of new patentable ideas tend to be sticky inventor-specific. The 

results reported in Table 5 indicate however that there are differences across technology 

classes. The variable SPILL_INV_IN is positive and statistically significant in the estimations 

for all technology classes except for consumer goods and civil engineering (for which the 

coefficient is not estimable as the variable gets value 0 in all cases). The estimated 

coefficient of SPILL_OUT is negative and statistically significant for electrical engineering, 

instruments and process engineering hinting that the knowledge flows crucial for patentable 

                                                           
8
 Estimation results of Table 3 show that the inventor-specific knowledge spillovers dominate the firm-specific 

ŬŶŽǁůĞĚŐĞ ƐƉŝůůŽǀĞƌƐ ĨƌŽŵ ƚŚĞ ŝŶǀĞŶƚŽƌƐ͛ ƉƌĞǀŝŽƵƐ ĞŵƉůŽǇĞƌ͘ TŚĞƌĞĨŽƌĞ͕ ƚŚĞ ǀĂƌŝĂďůĞ “PILLͺFIRMͺIN ƚŚĂƚ ŝƐ 
highly correlated with the variable SPILL_INV_IN is dropped here from the estimations.  
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ideas are sticky inventor-specific; the results regarding these technology classes are thus 

similar to the model comprising all technologies.  

Instead, we cannot reject the hypothesis that the coefficient of the variable SPILL_OUT is 

zero for chemicals and pharmaceuticals, mechanical engineering, and consumer goods and 

civil engineering. This finding, along with a positive and statistically significant coefficient of 

SPILL_INV_IN, suggests that the knowledge flows are fluid for chemicals and 

pharmaceuticals and mechanical engineering. In other words, in these technology fields 

knowledge genuinely spills with the mobility of inventors (i.e., hiring organizations learn and 

ĂďƐŽƌď Ă ƉĂƌƚ ŽĨ ŝŶǀĞŶƚŽƌ͛Ɛ ŬŶŽǁůĞĚŐĞͿ͘ Due to lack of data concerning the inventors 

entering the firms that file patents in the consumer goods and civil engineering technology 

class, we cannot make definite conclusions about whether patentable ideas tend to be 

based rather on fluid knowledge flows or firm-specific knowledge.  

- TABLE 5HERE - 

 

The formal firm-level intra-industry and inter-industry innovation collaborator variables do 

not appear generally statistically significantly in the estimated technology-specific equations. 

From the regional level variables the estimated coefficient of the variable PAT_LOCAL is 

positive and statistically significant only for chemicals and pharmaceutical and process 

engineering reflecting the presence of agglomeration externalities in these technology fields. 

The variable TD reflecting the localized diversity of patentable ideas gets a positive and 

statistically significant coefficient for process engineering. The variable TS capturing regional 

specialization in each technology class is positive and statistically significant in electrical 
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engineering and process engineering and also weakly statistically significant (i.e., at 10 

percent level) in consumer goods and civil engineering. 

 

5. CONCLUSIONS 

This paper has used data from 351 innovating firms for the years 2001ʹ2012 to study the 

roles of inventor-specific knowledge flows, spillovers from inter-organization innovation 

ĐŽůůĂďŽƌĂƚŝŽŶ ĂŶĚ ĂŐŐůŽŵĞƌĂƚŝŽŶ ĞǆƚĞƌŶĂůŝƚŝĞƐ ŝŶ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͘ OƵƌ 

empirical findings generally suggest that patentable ideas are strongly linked to the mobility 

of individual inventors, or that the knowledge flows transmitted are sticky inventor-specific. 

In other words, the larger the knowledge pool of an inventor entering (leaving) the firm, the 

ŵŽƌĞ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ ŝŶĐƌĞĂƐĞƐ ;ĚĞĐƌĞĂƐĞƐͿ͘ This means that the tacit 

knowledge of prolific inventors is not generally easily transferable to the new organization.  

We find though that in certain technology fields knowledge is fluid and transferable via the 

mobility of inventors. For chemicals and pharmaceuticals and mechanical engineering, the 

entry of inventors to a firm increases its patenting but ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐe is 

not notably affected when inventors leave. In other words, in these technology fields, it 

seems that firms hiring inventors can learn from and absorb ƐŽŵĞ ŽĨ ƚŚĞ ŝŶǀĞŶƚŽƌ͛Ɛ ĞƐƐĞŶƚŝĂů 

knowledge required for generating patentable ideas such that the loss of inventors does not 

ĚĞƚĞƌŝŽƌĂƚĞ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ĐĂƉĂďŝůŝƚŝĞƐ͘ Thus, in certain technology fields, the mobility 

of inventors is a notable transferring mechanism of knowledge spillovers providing longer 

term benefits for the hiring organizations. 

Interestingly, the strongest spillovers seem to be the intra-industry ones that are generated 

in the formal innovation collaboration between competitors. This empirical finding supports 
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the idea that the exchange of information and ideas for innovation are facilitated by the 

collaborating ƉĂƌƚŶĞƌƐ͛ ŽǀĞƌůĂƉƉŝŶŐ ƚĞĐŚŶŽůŽŐǇ ďĂƐĞƐ͘ Furthermore, it seems that regional 

specialization or Marshallian intra-industry externalities matter for the generation of new 

technologies in certain fields of engineering (i.e., electrical engineering, process engineering, 

and consumer goods and civil engineering). Our data thus suggest that the majority of intra-

industry spillovers across firms happen in direct firm-level collaboration but also Marshallian 

specialization externalities play a role in the generation of new technologies in certain 

technology fields. Furthermore, the magnitude of overall localized innovation activity is 

ŐĞŶĞƌĂůůǇ ƉŽƐŝƚŝǀĞůǇ ƌĞůĂƚĞĚ ƚŽ ƚŚĞ Ĩŝƌŵ͛Ɛ ƉĞƌĨŽƌŵĂŶĐĞ ƉƌŽǀŝĚŝŶŐ ĨƵƌƚŚĞƌ ƐƵƉƉŽƌƚ ĨŽƌ ƚŚĞ 

existence of agglomeration externalities. 

We find no evidence of significant spillovers arising from either formal inter-industry 

innovation collaboration or Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ collaboration with universities or research 

institutes. At the regional level, the localized technological diversity of ideas is generally 

ƐƚĂƚŝƐƚŝĐĂůůǇ ƐŝŐŶŝĨŝĐĂŶƚůǇ ƌĞůĂƚĞĚ ƚŽ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ neither. Our data thus 

find no support for Jacobian externalities. Knowledge flows rather tend to transfer from one 

firm to another via the mobility of individual inventors and via the formal intra-industry 

collaboration.  

From the point of view of technology policy, our findings indicate that encouraging intra-

industry innovation collaboration or innovation coopetition can be an efficient means to 

facilitate the exploitation of knowledge spillovers. Our study hints that R&D subsidies 

targeted for joint intra-industry innovation projects may be justified due to knowledge 

spillovers. However, we cannot make any strong statements on this question as our 

empirical analysis focuses merely on the significance of different channels of knowledge 
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ƐƉŝůůŽǀĞƌƐ ŝŶ ƚŚĞ Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ͕ ĂŶĚ ŝƚ ĚŽĞƐ ŶŽƚ assess the economic value or 

magnitude of those spillovers. 

Also, in our empirical analysis, we use a rather narrow, though commonly used and 

ŝŵƉŽƌƚĂŶƚ ŵĞĂƐƵƌĞ ŽĨ Ă Ĩŝƌŵ͛Ɛ ŝŶŶŽǀĂƚŝŽŶ ƉĞƌĨŽƌŵĂŶĐĞ ;ŝ͘Ğ͕͘ ƚŚĞ ŶƵŵďĞƌ ŽĨ ƉĂƚĞŶƚ 

applications). There is, however, a wide range of non-patentable innovations such as 

organizational and marketing innovations that are out of the scope of our analysis. 

Therefore, the reported estimation results should be interpreted with caution. It is possible 

that the importance of different spillover channels varies by the type of innovation. 

Hopefully future empirical work sheds light on this question as well as on the economic 

value of knowledge spillovers. 
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Table 1. Innovation and types of knowledge 

 SPILL_INV_IN > 0 SPILL_INV IN = 0 

SPILL_OUT < 0 Sticky inventor-specific 

knowledge 

 

 

SPILL_OUT = 0 Fluid knowledge 

 

Firm-specific knowledge 
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Table 2. Description of variables 

Variable Description Mean Std. Dev. Obs 

PAT Number of patent applications at time t 3.790 36.033 2536 

PAT_TECH1 Dummy variable that gets value 1 if a firm has filed 

patent applications in  technology class "Electrical 

engineering" at time t 

0.086 0.281 2536 

PAT_TECH2 Dummy variable that gets value 1 if a firm has filed 

patent applications in technology class 

"Instruments" at time t 

0.071 0.257 2536 

PAT_TECH3 Dummy variable that gets value 1 if a firm has filed 

patent applications in technology class "Chemicals 

and pharmaceuticals" at time t 

0.060 0.238 2536 

PAT_TECH4 Dummy variable that gets value 1 if a firm has filed 

patent applications in technology class "Process 

engineering" at time t 

0.080 0.271 2536 

PAT_TECH5 Dummy variable that gets value 1 if a firm has filed 

patent applications in technology class "Mechanical 

engineering" at time t 

0.041 0.198 2536 

PAT_TECH6 Dummy variable that gets value 1 if a firm has filed 

patent applications in technology class "Consumer 

goods and civil engineering" at time t. 

0.015 0.120 2536 

SPILL_INV_IN Cumulative sum of patent applications at t-1 of 

inventors which moved to a firm at time t 

15.295 71.474 2536 

SPILL_FIRM_IN Cumulative sum of patent applications at t-1 of 

previous employers of inventors which moved to a 

firm at time t 

156.101 878.288 2536 

SPILL_OUT Cumulative sum of patent applications at t-1 of 

inventors who left a firm at time t 

7.051 30.079 2536 

PAT_OWN Firm's cumulative sum of patent applications at t-1 36.573 343.5813 2536 

PAT_COOP Cumulative sum of patent applications of a firm's 

past coopetitors  at t-1 

0.607 7.701 2536 

PAT_COLLAB Cumulative sum of patent applications of a firm's 

past collaborator firms  at t-1 

13.006 108.257 2536 

PAT_RES Cumulative sum of patent applications of those 

universities and/or research institutes with which a 

firm has filed joint patent applications  at t-1 

7.719 102.521 2536 

I Log of change in intangible assets from t-1 to t 1.380 9.893 2536 

PAT_LOCAL Number of patent applications of the region in 

which a firm is located at t-1 

457.226 470.726 2536 

TD Diversity in the region in which a firm is located at 

t-1 

0.612 0.134 2536 

TS_1 Specialization index in tech. "Electrical engineering" 

in the region in which a firm is located at t-1 

0.708 0.467 2536 

TS_2 Specialization index in tech. "Instruments" in the 

region in which a firm is located at t-1 

1.546 1.450 2536 

TS_3 Specialization index in tech. "Chemicals and 

pharmaceuticals" in the region in which a firm is 

located at t-1 

1.075 0.964 2536 

TS_4 Specialization index in tech. "Process engineering" 

in the region in which a firm is located at t-1 

1.235 1.076 2536 

TS_5 Specialization index in tech. "Mechanical 

engineering" in the region in which a firm is located 

1.609 1.699 2536 
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at t-1 

TS_6 Specialization index in tech. "Consumer goods and 

civil engineering" in the region in which a firm is 

located at t-1 

2.116 3.674 2536 

FOREIGN 1 if firm is foreign-owned firm at t, 0 otherwise 0.177 0.382 2536 

EMP Number of employees in at t 814.080 2642.510 2536 

AGE Age of firm at t 16.013 13.136 2536 
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Table 3. The estimation results of the random effects negative binomial model for innovation 

production function, dependent variable PAT 

  (1) (2) (3) 

  Coef./S.E Coef./S.E Coef./S.E 

SPILL_INV_IN 0.0023***  0.0027*** 

 

(0.0002)  (0.0003) 

 

   

SPILL_FIRM_IN  0.0002*** 0.0000 

 

 (0.0000) (0.0000) 

 

   

SPILL_OUT -0.0044*** -0.0050*** -0.0041*** 

 

(0.0010) (0.0011) (0.0010) 

 

   

PAT_OWN 0.0004*** 0.0006*** 0.0003*** 

 

(0.0001) (0.0001) (0.0001) 

 

   

PAT_COOP 0.0147*** 0.0120*** 0.0153*** 

 

(0.0029) (0.0030) (0.0030) 

 

   

PAT_COLLAB 0.0002 0.0005 0.0002 

 

(0.0004) (0.0004) (0.0004) 

 

   

PAT_RES 0.0001 -0.0001 0.0001 

 

(0.0001) (0.0001) (0.0001) 

 

   

I 0.0026 0.0010 0.0030 

 

(0.0024) (0.0026) (0.0023) 

 

   

PAT_LOCAL 0.0006*** 0.0006*** 0.0006*** 

 

(0.0001) (0.0001) (0.0001) 

 

   

TD 0.0419 0.0025 0.0375 

 

(0.3975) (0.3935) (0.3984) 

 

   

FOREIGN 0.1144 0.0994 0.1205 

 

(0.1379) (0.1386) (0.1378) 

 

   

EMP 0.0001*** 0.0001*** 0.0001*** 

 

(0.0000) (0.0000) (0.0000) 

 

   

AGE 0.0048 0.0079 0.0045 

 

(0.0047) (0.0049) (0.0047) 

 

   

Years  Yes Yes Yes 

Industries  Yes Yes Yes 

 

   

Log pseudolikelihood -2878.163 -2904.459 -2877.207 

Wald(Chi2) 613.261*** 456.872*** 628.325*** 

Observations 2536 2536 2536 

Notes: Standard errors are in parentheses. Industry and year dummies are included in all estimations. 

Significance levels are reported in superscript, where *** denotes a significance level of 1%. 

Table 4. The role of time lags of SPILL_INV_IN and SPILL_OUT 
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  Coef./S.E 

SPILL_INV_IN 0.0025*** 

 

(0.0002) 

  SPILL_INV_IN (t-2) 0.0011*** 

 

(0.0002) 

  SPILL_OUT -0.0012 

 

(0.0019) 

  SPILL_OUT (t-2) -0.0051** 

 

(0.0020) 

  PAT_OWN 0.0004*** 

 

(0.0001) 

  PAT_COOP 0.0121*** 

 

(0.0030) 

  PAT_COLLAB 0.0001 

 

(0.0004) 

  PAT_RES 0.0000 

 

(0.0001) 

  I 0.0029 

 

(0.0023) 

  PAT_LOCAL 0.0006*** 

 

(0.0001) 

  TD 0.0151 

 

(0.4041) 

  FOREIGN 0.1420 

 

(0.1381) 

  EMP 0.0001*** 

 

(0.0000) 

  AGE 0.0046 

 

(0.0047) 

  Years  Yes 

Industries  Yes 

  Log pseudolikelihood -2860.376 

Wald(Chi2) 663.641*** 

Observations 2528 

Notes: Standard errors are in parentheses. Significance levels are reported in superscript, where *** denotes a 

significance level of 1% and ** denotes a significance level of 5%. 

Table 5. The estimation results of the random effects ƉƌŽďŝƚ ŵŽĚĞů ĨŽƌ Ă Ĩŝƌŵ͛Ɛ ƉƌŽƉĞŶƐŝƚǇ ƚŽ ƉĂƚĞŶƚ 
by technology classes 
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  PAT_TECH1 PAT_TECH2 PAT_TECH3 PAT_TECH4 PAT_TECH5 PAT_TECH6 

  

Electrical 

engineering 

Instruments Chemicals and 

pharmaceuticals 

Process 

engineering 

Mechanical 

engineering 

Consumer 

goods & 

civil eng. 

  Coef./S.E Coef./S.E Coef./S.E Coef./S.E Coef./S.E Coef./S.E 

SPILL_INV_IN_k 0.0005*** 0.0014** 0.0010*** 0.0003*** 0.0020** 

 

 

(0.0001) (0.0006) (0.0002) (0.0001) (0.0008) 

 

       SPILL_OUT_k -0.0075*** -0.0047** -0.0004 -0.0016** -0.0036 -0.0028 

 

(0.0020) (0.0021) (0.0003) (0.0006) (0.0023) (0.0034) 

       PAT_OWN_k 0.0023*** 0.0027*** 0.0005*** 0.0007*** 0.0006** 0.0007** 

 

(0.0005) (0.0008) (0.0002) (0.0002) (0.0003) (0.0004) 

       PAT_COOP_k 0.0071 -0.0088 -0.0081 0.0001 

 

0.1068 

 

(0.0081) (0.0119) (0.0063) (0.0009) 

 

(24.9523) 

       PAT_COLLAB_k 0.0000 0.0028 -0.0003 0.0001 -0.0001   

 

(0.0000) (0.0019) (0.0004) (0.0001) (0.0004) 

 

       PAT_RES_k -0.0116*** -0.0002 0.0000 

 

-0.0004 

 

 

(0.0030) (0.0002) (0.0002) 

 

(0.0014) 

 

       I 0.0009** 0.0009** 0.0000 -0.0005 0.0006** 0.0000 

 

(0.0004) (0.0004) (0.0003) (0.0003) (0.0003) (0.0001) 

       PAT_LOCAL_k 0.0000 0.0000 0.0000*** 0.0000*** 0.0000 0.0000 

 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

       TD_k 0.0273 0.0087 0.0205 0.0993** -0.0178 -0.0036 

 

(0.0561) (0.0388) (0.0383) (0.0466) (0.0267) (0.0124) 

       TS_k 0.0718*** 0.0020 -0.0003 0.0092** 0.0001 0.0008* 

 

(0.0224) (0.0033) (0.0040) (0.0038) (0.0019) (0.0004) 

       FOREIGN -0.0032 -0.0031 0.0019 -0.0127 -0.0003 0.0019 

 

(0.0153) (0.0133) (0.0118) (0.0137) (0.0089) (0.0040) 

       EMP 0.0000** -0.0000* 0.0000 0.0000 0.0000 0.0000 

 

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

       AGE -0.0007 -0.0005 -0.0002 0.0002 0.0004 0.0000 

 

(0.0005) (0.0004) (0.0003) (0.0004) (0.0003) (0.0001) 

       

       Years  Yes Yes Yes Yes Yes Yes 

Industries  Yes Yes Yes Yes Yes Yes 

       Log 

pseudolikelihood -491.941 -495.087 -405.794 -475.519 -319.533 -138.060 

Wald(Chi2) 193.910*** 111.750*** 120.260*** 103.350*** 75.820*** 49.790*** 

Observations 2536 2536 2536 2536 2536 2536 

Notes: The reported coefficients are marginal effects of random-effects probit regressions; standard 

errors are in parentheses. In SPILL_INV_IN_k, SPILL_OUT_k, PAT_OWN_k, PAT_COOP_k, 
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PAT_COLLAB_k,  PAT_RES_k, PAT_LOCAL_k, TD_k and TS_k the letter k refers to the same technology 

class (1-6) as is the technology class of the dependent variable. The blank coefficient cells of the 

variables indicate that there are no non-zero values of those variables and they are excluded from 

the regression. Industry and year dummies are included in all estimations. Significance levels are 

reported in superscript, where *** denotes a significance level of 1%, ** denotes a significance level 

of 5% and * denotes a significance level of 10%. 

 


