How to get what you want when you do not know what you want

Luigi Marengo
Scuola Supeiore Sant'Anna
LEM
l.marengo@sssup.it

Corrado Pasquali

cpasquali@unite.it

Abstract
In this paper we present a model of the interplay between learning, managerial intervention and the allocation of decision rights in the context of a generalized agency problem. Within this context, not only actors face conflicting interests but also diverging cognitive "visions" of the right course of action. We assume that a principal may obtain the implementation of desired organizational policies by means of appropriate design of the allocation of decisions or by means of costly intervention through authority or incentives, and analyze their consequences for organizational control and learning. We show that the structure of allocation of decision rights is very powerful in terms of control but when the principal is uncertain about the course of action organizational structure and managerial intervention complement each other in non-trivial ways and must be carefully tuned. We also show that there is a general advantage in maximizing the partitioning decision rights, because it allows both higher control and higher levels of learning.
How to get what you want when you do not know what you want.

Abstract

In this paper we present a model of the interplay between learning, managerial intervention and the allocation of decision rights in the context of a generalized agency problem. Within this context, not only actors face conflicting interests but also diverging cognitive “visions” of the right course of action. We assume that a principal may obtain the implementation of desired organizational policies by means of appropriate design of the allocation of decisions or by means of costly intervention through authority or incentives, and analyze their consequences for organizational control and learning. We show that the structure of allocation of decision rights is very powerful in terms of control but when the principal is uncertain about the course of action organizational structure and managerial intervention complement each other in non-trivial ways and must be carefully tuned. We also show that there is a general advantage in maximizing the partitioning of decision rights, because it allows both higher control and higher levels of learning.

Keywords: Delegation, Authority, Incentives, Organizational Structure, Learning
1 Introduction

Knowledge in complex organizations is necessarily distributed. In most modern production processes, no individual can possibly master the immense amount of knowledge that is needed to design, produce and market a good or service, together with all the knowledge that is needed to mobilize the financial, human, and capital resources involved in this production and to coordinate them in purposeful organizational processes. This is especially true when part of this knowledge is inherently tacit and specific, but also when this is not the case obvious cognitive bounds prevent a single manager to gather all the relevant knowledge.

A well known principle of organizational economics is that, whenever knowledge cannot be easily transferred to the higher layers of the organization, decision rights should be delegated to the lower layers where the relevant knowledge is. A decision right should be co-located with the knowledge which is relevant for that decision (Hayek 1945, Jensen and Meckling 1992), otherwise organizational decisions will be suboptimal.

However, delegation of decision rights generates agency and control costs for, in principle, the delegated agent will choose to act in his own interest rather than in the principal’s. As it is well known, agency costs can be partly mitigated by incentive compatible contracts, control technologies, authority and fiat. Complex trade-offs are generated between the benefits and costs of delegation, whereby different structures of delegation, authority, control, and incentives strike different balances (Aghion and Tirole 1997).

The picture is further complicated when we consider that delegation, authority and incentives may interact in non-trivial ways. For instance, it has been pointed out that decreased delegation and increased levels of authority, especially when expressed by the principal’s frequent overruling of the agents’ decisions, may actually decrease the agent’s motivation and cause lower organizational performance (Foss, Foss, and Vazquez 2006). More generally, recent literature on social preferences has challenged the conventional assumptions on individual motivation which lie at the heart of agency theory and has highlighted that decisions taken by principals and agents depend on how the behavior and attitude of the other party is perceived in the specific social context. Agents, for instance, often reciprocate generous incentive incompatible offers of high compensations with generous provisions of effort. Therefore incentive contracts and authority may produce very different ef-
fects from those anticipated by the theory. For instance, many researchers have pointed out that incentive compatible monetary incentives may crowd out voluntary cooperation and increase shirking as they are perceived as a signal of lack of trust (Fehr and Gächter 2002, Frey and Jegen 2001).

In this paper we want to enlarge this debate on the interaction between delegation and incentives by introducing two elements which are typical of the evolutionary and competence traditions. First, we concentrate on an issue which generalizes and complements the debate on self-interest and is what Rumelt (1995) calls “incommensurable beliefs” and recognizes as a fundamental source of organizational inertia, i.e. “…the problem that arises when different individuals or groups hold sincere but differing beliefs about the nature of the problem and its solutions” (Rumelt 1995). Second, we acknowledge that optimal delegation is limited not only by loss of control but also by complexity and uncertainty. In particular, we consider two interrelated sources of complexity. First, we will assume that, in general, the principal does not know where the relevant knowledge is, and therefore the design of an optimal structure where knowledge and decision rights are collocated becomes problematic. Second, delegation of decisions is limited by interdependencies among them. The organization is seen as a complex object, whereby pieces of distributed knowledge have to be combined together in specific ways and individual decisions are highly interdependent. Since individuals have different beliefs on what should be done, decisions of one individual will produce positive (if beliefs are aligned) or negative (if they diverge) externalities on the other agents.

Incommensurable beliefs and imperfect understanding of the distribution of knowledge are obviously linked. Different agents in the organization hold different beliefs about the appropriate course of action and all such beliefs may contain a part of “correct” knowledge, but the principal, who in turn has different beliefs, will in general ignore where the useful pieces of knowledge are located.

We will assume that agents have not only preferences and interests, but also cognition, ideas, visions about what the organizational course of action should be, well beyond the mere interest in maximizing the salary net of effort costs. Without downplaying the role of diverging interests, it must be recognized that also diverging views are an important source of conflict in organizations. Everyone who has had some managing role in a business, academic or governmental organization has probably experienced such con-
Conflict: people simply have different ideas about what should be done and how it should be done. Often such different ideas can only partly, or not all, be ascribed to their self interest. Agents hold diverging and motivationally strong views for the mere fact that they sincerely believe that their intended course of action is good for the organization’s interest and attach high value to this belief. Conflict arising from diverging interests and conflict arising from diverging views are often strictly intertwined: a manager of a division or department may think that more resources must be allocated to the unit she manages both because she believes to the best of her knowledge that this will serve the organization’s objectives (and indeed this may prove right) and because she looks for private benefits that she may reap in terms of higher salary, power, visibility and prestige.

People do indeed hold different views of what should be done, how things should be managed, which alternative courses of actions should be followed also because, in good faith, they think differently about how the same organizational objectives could be better achieved. This source of conflict is likely to be especially relevant when non-routine decisions have to be taken, when new hard problems are being faced, when strong procedural uncertainty characterizes the current situation, when organizational and or technological change is needed, that is, in all those situations in which non-routine courses of action must be envisaged and what must be done is far from obvious and uncontroversial. In such circumstances, organizations do not have to find optimally efficient allocations of given resources, but have to design complex procedures that may provide valuable solutions to ill-structured problems (Simon 1981). However, in such situations, different visions are also a fundamental source of learning. When the principal does not know exactly what should be done, she may learn from the agents’ ideas. In this respect, the standard solution to the problem of conflict suggested by agency model, that is aligning the agents’ interests with the principal’s, may actually prove detrimental and curb this important source of learning through diversity.

Agency conflict is a source of inefficiency and incentives are needed in order to correct for misalignment of objectives. As well known, in the presence of information asymmetries and with risk-averse agents, perfect alignment is usually impossible and full efficiency cannot be restored (Fama 1980). However, when conflict arises because of different views of what must be done, alignment may be difficult also lacking information asymmetries because agents are concerned with organizational actions and with their in-
dividual effort as well. In such cases actions and decisions by some agents
tend to produce externalities on the other agents that may be both positive
(agent i chooses an action that is aligned with what agent j thinks should be
done) or negative (when an agent i’s action differs from what agent j would
have chosen in that situation). Such negative and positive externalities are a
source of complexity that contractual arrangements can hardly manage opti-
mally (Bernholz 1997). Moreover, and more importantly, alignment may not
be desirable because agents’ cognitions, ideas and visions may prove partly
or totally superior to the principal’s. If the latter succeeds in obtaining a
perfect implementation of her desired actions, she looses the opportunity of
discovering better ones that agents may know.

In the business strategy literature, the former problem is referred to as
the strategy implementation problem (Hrebiniak and Joyce 1984) and con-
sidered as a source of inefficiency. The organization is viewed as knowing an
appropriate course of action but for a variety of incentive and coordination
reasons is not realizing that set of policies. But an alternative view, e.g. the
literature on emergent strategy (Mintzberg 1973, Burgelman 1994) suggests
that the divergence between expressed strategy and actual behavior may be
a favorable circumstance. The search and discovery that results from such
discrepancies may yield the identification of a superior set of actions than
that which would be suggested by the conscious choice of strategy.

In this paper we suppose that principals and agents hold different views of
an articulated course of action that we model by way of a vector of interde-
pendent policies. The principal has both a problem of implementation of the
wanted policies and a problem of inadequacy of what she believes the right
policies are. In order to solve these two problems she can act either on the
allocation of decisions among agents\(^1\), or on incentives, i.e. trying to modify
the agents’ interests in different actions, or by using authority to overrule
the agent’s decisions. We will assume that both incentive and authority in-
terventions are costly, as both of them, as already argued, inevitably lead to
some inefficiency.

In our model a principal faces a complex organizational problem and must
allocate decision rights to many agents. Decisions are interdependent and
agents have some cognition or beliefs on what the organization should do not

\(^1\)In a recent paper, Canice Prendergast suggests a somehow similar and complementary
framework by developing a model in which the principal’s main tool for alleviating incentive
problems is to hire the right agent in the right position (Prendergast 2009).
only in the decision items allocated to them, but, in principle, in all decision
items. The principal faces two problems: control and learning. The problem
of control is the problem of having the principal’s preferred policies correctly
implemented, while learning refers to the principal’s capacity to learn the
best policies if she does not fully know them.

In order to solve these two problems the principal can use the delegation
structure, i.e. appointing specific agents to a subset of decisions, or
can intervene through extra monetary or fiat incentives in order to induce
or force agents to take decisions which differ from their preferred ones. We
show that delegation structure and managerial intervention are largely sub-
stitute if learning is not at stake, in the sense that the principal can to a
large extent obtain high levels of control by finely partitioning decisions and
controlling the agenda and the initial conditions, with little or no costly
direct intervention. When instead the principal must combine control and
learning, delegation and intervention complement each other. However, also
in this case, there is a tendency of over-partitioning decision rights because
finer partitions increase the number of possible organizational equilibria and
therefore allow both higher control (through selection of the most favor-
able equilibrium) and higher amounts of exploration and learning (because
a broader spectrum of equilibria can be experimented). We also show that,
in order to increase learning, not all externalities among decisions should be
internalized within the same decision maker, because the remaining level of
unresolved conflict increases exploration and learning, in line with the idea
that unresolved conflict is not necessarily a source of inertia but may be a
fundamental engine for learning and change.

In the following section we outline a model that should help clarifying
these trade-offs under more rigorous terms.

2 The model

We consider a firm that has to take decisions on a set of \(n \) policies \(P = \{p_1, p_2, \ldots, p_n\} \). For simplicity we assume that each policy may take only
two values \(p_i \in \{0, 1\} \) and therefore the set of policies if formed by the \(2^n \)
 vectors of \(n \) binary elements. We will call \(X \) this set of \(2^n \) policy vectors and
\(x_i = [p_1^i, p_2^i, \ldots, p_n^i] \) one generic element thereof.

We concentrate on those cases in which policies interact with each other in
complex ways to determine the overall organizational performance. Decisions
on single policy items generate externalities, both positive and negative, on other policies. Thus the determination of the correct combination of policies is a complex task as the performance contribution of a single policy item depends upon the value taken by other policies. Complementarity and superadditivity (Milgrom and Roberts 1992) among policies are special cases.

We suppose that policy vectors have an exogenously determined objective performance ordering \(\succ_N \). This ordering reflects the organizational fit in the environment and we will call it conventionally the “true ordering”. If \(x_i \succ_N x_j \) then policy vector \(x_i \) has strictly higher performance than vector \(x_j \). This true ordering determines a policy landscape - i.e. the coupling of every policy vector with its performance - whose ruggedness\(^2\) reflects the extent of interdependencies among policies and thus the complexity of the problem of finding the best performing policy vector(s) (Levinthal 1997, Page 1996, Rivkin and Siggelkow 2005).\(^3\) In the analysis and the simulation exercises below we will consider, unless otherwise specified, a generic complete and transitive ordering of policy vectors, without any further restriction.

Our organization is composed by a principal \(\Pi \) and a number of agents that may range from 1 up to \(n \). Each agent is attributed decision rights over a subset of policies. Let \(A = \{a_1, a_2, \ldots, a_h\} \), with \(1 \leq h \leq n \), be a set of agents and let each agent be associated to a non-empty subset of policies under his control. More precisely, let \(d_i \subseteq P \) be a generic non-empty subset of the set of policies. We call a decomposition of decision rights a partition\(^4\) of the set of policies, i.e. a set of non-empty subsets \(D = \{d_1, d_2, \ldots, d_k\} \) such that:

\[
\bigcup_{i=1}^{h} d_i = X \text{ with } d_i \cap d_j = \emptyset , \forall i \neq j
\]

We call organizational structure \(O \) a mapping of the set \(D \) onto the set \(A \) of agents, i.e. a mapping that assigns each subset of policies to one and only

\(^2\)In our model a policy landscape is highly rugged when modifications of one policy item determines large variations in the overall performance.

\(^3\)Actually these papers assume a fitness function, that is (random) assignments of performance level to each policy vector, usually normalized in the interval \([0, 1]\). For our model we do not need fitness (or performance) values but simply a complete and transitive performance ordering for policy vectors.

\(^4\)Actually we could also allow for some decision rights to be ambiguously allocated, so that two or more agents are entitled to modify the same policy. This phenomenon, which is often found in real organizations, can be easily modeled in our framework but we leave it to future investigation.
one agent, i.e. $O : D \mapsto A$. Note that, for the sake of simplicity, we assume that the principal does not directly control any policy item.

Assuming for instance four policy items, the following are possible examples of organizational structures:

- $\{a_1 \leftarrow \{p_1, p_2, p_3, p_4\}\}$, i.e. one agent has control on all four policies
- $\{a_1 \leftarrow \{p_1\}, a_2 \leftarrow \{p_2\}, a_3 \leftarrow \{p_3\}, a_4 \leftarrow \{p_4\}\}$, i.e. four agents have each control on one policy
- $\{a_1 \leftarrow \{p_1, p_2\}, a_2 \leftarrow \{p_3, p_4\}\}$, i.e. two agents have each control on two policies
- $\{a_1 \leftarrow \{p_1\}, a_2 \leftarrow \{p_2, p_3, p_4\}\}$, i.e. two agents with “asymmetric” responsibilities: one has control on the first policy item and the other on the remaining three

Finally, the organizational structure may also be characterized by an agenda $\alpha = a_{i_1}, a_{i_2}, \ldots, a_{i_h}$, that is a permutation of the set of agents defining the sequence with which agents are called to decide upon the policy items under their control.

We suppose that principal and agents have each an idiosyncratic ordering over the entire space X of policy vectors that may or may not correspond to the “true” ordering \succ_N. The principal is interested in the overall performance of the organization but may not know how to achieve this objective, i.e. her ordering over the policies space may differ from the true one. Analogously, each agent has an idiosyncratic ordering of policy vectors, which, in general, differs from the true one, the principal’s and the other agents’, reflecting the agent’s idiosyncratic vision, interest, and cognition. Moreover, such ordering concerns the entire set of policies, not only those under the control of the agent himself. We call \succeq_Π the principal’s ordering and \succeq_{a_i} the ordering held by agent i. We assume that all such individual orderings are complete and transitive, i.e. that if $x_i \succeq_k x_j$ and $x_j \succeq_k x_l$ then $x_i \succeq_k x_l$, where k may indicate the principal or any agent.

When asked to decide upon two alternative profiles for the policies under his control, an agent will choose the one that ranks higher in his own ordering, given the current state of the other policy items that are not under his control, unless the principal intervenes to change his decision. Intervention may take the form of extra monetary incentives or overruling by fiat.
in order to induce or force him to make a different choice. We assume that managerial intervention is equally costly in both cases and, for the sake of simplicity we make a simple linearity assumption and suppose that the cost of the intervention needed to induce or force an agent to choose a policy profile that ranks lower in his ordering is proportional to the difference of the rankings of the two alternatives. Suppose, for instance, that agent a_i has to choose between two policy vectors x_i and x_j (of course the vectors may differ only in items under the agent’s control) that rank respectively $rank(x_i) = r_i$ and $rank(x_j) = r_j$ with $r_i < r_j$, indicating that he prefers x_i to x_j. Of course the agent would choose vector x_i and if the principal wants to reverse the choice has to incur the cost $c(r_j - r_i)$ where c is, for simplicity, constant and equal for all agents. We could interpret c as an extra monetary incentive the principal has to give to the agent in addition to the standard compensation needed to elicit a normal level of effort, or as a loss of efficiency due to authority intervention which will decrease the agent’s motivation and committment.

We suppose that at the outset an initial “status quo” policy vector is (randomly) given. Then the first – according to the agenda – agent may modify the policies under his control. He generates all the sub-vectors for the policies under his control and chooses the one that, together with current policies that are not under his control, will determine the vector he prefers, unless intervention from the principal induce him to make a different choice.

When the first agent in the agenda has taken a decision, the value he has chosen for the policies under his control become part of the new status quo. Then the same procedure is repeated for the second, third, . . . , h–th agents in the agenda. Once all agents have acted on the policies under their control, we may either assume that the procedure comes to a halt or that the agenda is repeated over and over again until an equilibrium or a cycle are encountered. An organizational (local) equilibrium is a policy vector for which no agent finds it convenient or possible to modify items under his control according to the procedure outlined so far. A cycle is instead a subset of policy vectors among which agents keep cycling.

5We use the convention that if the agent strictly prefers x_i to x_j then $r_i < r_j$ and that the agent’s mostly preferred policy x_0 has rank $rank(x_0) = 1$.

6In what follows we usually find properties for all possible initial policy vectors.

7Impossibility may derive from the rule that the agenda can be repeated only once and therefore after the h–th agent in the agenda has selected his policy item the new status quo cannot be further modified, even if some agents would like to do so.
In the sequel we will investigate both stopping rules. Of course if the agenda is repeated only once cycles are ruled out and the organization will reach a decision but, we will show, there will be in general many possible outcomes. On the contrary if the agenda can be indefinitely repeated until a cycle is encountered or an equilibrium is reached, we will show that cycles are usually very likely, but when cycles are not encountered the number of possible equilibria is very small.

In order to be more precise, we can characterize the properties of the paths in the space of policies that emerge out of the procedure informally outlined above by providing a few definitions.

Given an organizational structure \(O : D \mapsto A \), we say that the policy vector \(x \) is a preferred neighbor of vector \(y \) for agent \(a_k \) who has control of the set of policies \(d_k \) if the following three conditions hold:

1. \(x \succeq_{a_k} y \)
2. \(p^x_\nu = p^y_\nu \forall \nu \notin d_k \)
3. \(x \neq y \)

Conditions 2 and 3 require that the two vectors differ only by policy items under the control of agent \(a_k \). According to the definition, a preferred neighbor can be reached through the decision of a single agent.

We call \(H_k(x_i, a_k) \) the set of preferred neighbors of a vector \(x_i \) for agent \(a_k \).

A path \(P(x_i, O, \alpha) \) from a vector \(x_i \) and for an organizational structure \(O \) and an agenda \(\alpha \) is a sequence, starting from \(x_i \), of preferred neighbors for the agents in the agenda:

\[
P(x_i, O, \alpha) = x_i, x_{i+1}, x_{i+2}, \ldots \text{ with } x_{i+m+1} \in H_{a_{i+m+1}}(x_{i+m}, a_{i+m+1} \in \alpha)
\]

A vector \(x_j \) is reachable from another vector \(x_i \) and for the organizational structure \(O \) if there exist a path \(P(x_i, O, \alpha) \) such that \(x_j \in P(x_i, O, \alpha) \).

A path can end up either on a (local) equilibrium, i.e. a vector which does not have any preferred neighbor, or in a cycle among a set of vectors which are preferred neighbors to each other.

A vector \(x \) is a local equilibrium for the organization \(O \) if there does not exist a vector \(y \) such that \(y \in H(x, a_k) \) for any agent \(a_k \) in the agenda.

A cycle is a set \(X^0 = \{x_1^0, x_2^0, \ldots, x_j^0\} \) of policy vectors such that \(x_1^0 \in H(x_j^0, a_{i_1}), x_2^0 \in H(x_{j-1}^0, a_{i_2}), \ldots, x_j^0 \in H(x_1^0, a_{i_j}) \).
In the following sections we will show that paths and their outcomes, that is the equilibrium policy vector that is finally chosen, or the emergence of a cycle, can be highly manipulated by the principal either by changing the allocation of agents to different policies or by appropriate managerial intervention. We will first examine the case in which the principal “knows what she wants” and does not modify her preferences. We will show that, in general, the principal may obtain policy vectors that are equal or very close to the ones she prefers at no or very small cost by appropriately modifying the allocation of decision rights. Managerial intervention and organizational structure appear therefore as substitutes. Then we will consider the situation in which the principal “does not know what she wants”, i.e. tries to learn from the environment which policy vectors perform better, and show that instead managerial intervention and organizational structure complement each other.

3 Getting what you want when you know what you want

Let us first examine the case in which the principal precisely knows the set of policies she wants to be implemented either because she has the right knowledge of the environment, i.e. her ordering over the space of policy vectors corresponds to their true performance value, or because she simply wants her preferred policy to be implemented, whatever the result.

The principal has two means of achieving this goal: she can act on the organizational structure and/or she can intervene directly on the agents’ decisions through extra incentives or fiat. Let us first show, by means of a few examples, that the principal can to a large extent manipulate the agent’s decision and obtain a policy profile equal or very close to her preferred vector without intervention, but leaving agents free to take the decisions they prefer.

Consider first a very simple example in which 3 agents have a common most preferred choice, which is not the preferred option of the principal. Table 1 presents their individual preferences, ranked from the most to the least preferred outcome:
Table 1: An example of the emergence of different local equilibria

<table>
<thead>
<tr>
<th>Order</th>
<th>Agent1</th>
<th>Agent2</th>
<th>Agent3</th>
<th>Principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>011</td>
<td>011</td>
<td>011</td>
<td>000</td>
</tr>
<tr>
<td>2nd</td>
<td>111</td>
<td>000</td>
<td>010</td>
<td>101</td>
</tr>
<tr>
<td>3rd</td>
<td>000</td>
<td>001</td>
<td>100</td>
<td>111</td>
</tr>
<tr>
<td>4th</td>
<td>010</td>
<td>110</td>
<td>101</td>
<td>110</td>
</tr>
<tr>
<td>5th</td>
<td>100</td>
<td>010</td>
<td>000</td>
<td>100</td>
</tr>
<tr>
<td>6th</td>
<td>110</td>
<td>111</td>
<td>110</td>
<td>001</td>
</tr>
<tr>
<td>7th</td>
<td>101</td>
<td>101</td>
<td>111</td>
<td>010</td>
</tr>
<tr>
<td>8th</td>
<td>001</td>
<td>100</td>
<td>001</td>
<td>011</td>
</tr>
</tbody>
</table>

All the agents prefer vector $[0,1,1]$ to any other option, but this vector is the least preferred one by the principal. This looks indeed like a bad situation for the principal and apparently she could get better outcomes only by incurring high intervention costs, but at a closer scrutiny we notice that the principal can actually avoid such costs.

Consider for instance the organizational structure $\{a_1 \leftarrow \{p_1\}, a_2 \leftarrow \{p_2\}, a_3 \leftarrow \{p_3\}\}$, with agenda (a_1, a_2, a_3) and the initial status quo $[1,1,0]$. Agent 1 decides first and chooses to switch to 0 the policy p_1 under his control (because $[1,1,0] \preceq_{a_1} [0,1,0]$), then agent 2 switches to 0 the policy p_2 under his control. The policy vector has now become $[0,0,0]$ and agent 3 will not further modify it because $[0,0,0] \preceq_{a_3} [0,0,0]$, neither will agents 1 and 2: $[0,0,0]$ is a local equilibrium for this organizational structure and the principal can obtain it at no cost, even if it is dominated by another policy vector for all the agents.

Actually it is easy to verify that $[0,0,0]$ is the equilibrium that the organization reaches from six out of eight initial conditions. Only for initial conditions $[0,1,1]$ and $[1,1,1]$ will the organization reach the other equilibrium $[0,1,1]$, which is the most preferred one by all the agents.

The same result of two equilibria $[0,0,0]$ and $[0,1,1]$ could be obtained for instance with the organizational structure $\{a_1 \leftarrow \{p_1,p_2\}, a_2 \leftarrow \{p_3\}\}$ and agenda (a_1, a_2). On the contrary, the organizational structures $\{a_1 \leftarrow \{p_1\}, a_2 \leftarrow \{p_2,p_3\}\}$ and, obviously, $\{a_i \leftarrow \{p_1,p_2,p_3\}\ \forall i \in \{1,2,3\}$ possess the unique global equilibrium $[0,1,1]$.

Actually, stronger results can be shown. It is indeed possible to provide cases in which the same group of agents can generate different global equilibria (i.e. equilibria that are stably reached from any initial condition) or
cycles, depending upon the organizational structure. One such example may be illustrated by table 2 that summarizes the preferences of three hypothetical agents:

<table>
<thead>
<tr>
<th>Order</th>
<th>Agent1</th>
<th>Agent2</th>
<th>Agent3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>001</td>
<td>000</td>
<td>001</td>
</tr>
<tr>
<td>2nd</td>
<td>110</td>
<td>111</td>
<td>110</td>
</tr>
<tr>
<td>3rd</td>
<td>000</td>
<td>001</td>
<td>000</td>
</tr>
<tr>
<td>4th</td>
<td>010</td>
<td>010</td>
<td>010</td>
</tr>
<tr>
<td>5th</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6th</td>
<td>011</td>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>7th</td>
<td>111</td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>8th</td>
<td>101</td>
<td>110</td>
<td>101</td>
</tr>
</tbody>
</table>

Table 2: Emergence of cycles or different global equilibria

It is easy to verify that this triple of agents (note that agents 1 and 3 are identical) may either generate a cycle, or the vector [0,0,1] as unique global equilibrium or the vector [0,0,0] as another unique global equilibrium given three different organization structures. A principal could get one of these very different outcomes simply by changing the organizational structure.

Structure \(\{a_1 \leftarrow \{p_1, p_2\}, a_2 \leftarrow \{p_3\}\} \) always generates the cycle \([0, 0, 1] \rightarrow [0, 0, 0] \rightarrow [1, 1, 0] \rightarrow [1, 1, 1] \rightarrow [0, 0, 1]\). It is therefore a structure in which intra-organizational conflict does never settle into an equilibrium, unless a stopping rule is provided. Structure \(\{a_1 \leftarrow \{p_1\}, a_2 \leftarrow \{p_2\}, a_3 \leftarrow \{p_3\}\} \) has the unique global equilibrium [0,0,1] that is reached from every initial condition, whereas structure \(\{a_1 \leftarrow \{p_1\}, a_2 \leftarrow \{p_2, p_3\}\} \) also produces a unique global equilibrium but a different one, i.e. vector [0,0,0].

We cannot here provide more general results, but in Marengo and Settepanella (2010) it is formally proven, by using some properties of the geometry of hyperplanes arrangements and in the slightly different context of social choice with majority voting, that any kind of cycle can always be broken by appropriate changes of what we call here organizational structure and necessary and sufficient conditions are given for any vector (e.g. the principal’s most preferred policy profile) to be a global or local equilibrium for an appropriate organizational structure.

So far we have simply provided some examples crafted in such a way as to show the possibility of manipulation of the outcome of the organizational decision processes by appropriately allocating decision rights. One could
wonder how general these results are and how such manipulation could complement or substitute the manipulation that may be achieved by managerial intervention, i.e., by modifying the agents’ choices through alteration of their payoff landscape.

In order to answer this question we investigate the general properties of random populations of agents and principals. We simulate randomly generated problems with \(n = 8 \) policy items and up to eight agents with randomly generated preferences. We test the following organizational structures with 1, 2, 4 and 8 agents:

- **O1**: \(a_1 \leftarrow \{1, 2, 3, 4, 5, 6, 7, 8\} \)
- **O2**: \(a_1 \leftarrow \{1, 2, 3, 4\}, a_2 \leftarrow \{5, 6, 7, 8\} \) with agenda \(\alpha = a_1, a_2 \)
- **O4**: \(a_1 \leftarrow \{1, 2\}, a_2 \leftarrow \{3, 4\}, a_3 \leftarrow \{5, 6\}, a_4 \leftarrow \{7, 8\} \) with agenda \(\alpha = a_1, a_2, a_3, a_4 \)
- **O8**: \(a_1 \leftarrow \{1\}, a_2 \leftarrow \{2\}, a_3 \leftarrow \{3\}, a_4 \leftarrow \{4\}, a_5 \leftarrow \{5\}, a_6 \leftarrow \{6\}, a_7 \leftarrow \{7\}, a_8 \leftarrow \{8\} \) with agenda \(\alpha = a_1, a_2, \ldots, a_8 \)

In the sequel we will study the properties of decision making in randomly generated policy landscapes (that is the true ordering of policy vectors). In each case we will study the outcome for every initial status quo and we will repeat the exercise for 1000 different randomly generated problems.

We first consider the case in which the agenda may be endlessly repeated until an equilibrium or a cycle are encountered. Under such a rule, cycles are very frequent when decision rights are highly partitioned as in organization O8, they become less frequent with coarser partitions and disappear when all decisions are delegated to a single agent. When cycles do not appear, the number of equilibria is always small. Table 3 summarizes these results by presenting the average number of cycles (with standard deviations in brackets) and the share of initial conditions leading to a cycle obtained over 1000 different randomly generated problems for the four organizational structures. For instance, the first line tells that with organizational structure O8, 78\% of the 256,000 simulated paths (256 initial status quo times 1000 repetitions with different randomly generated agents) lead to a cycle. When cycles are

\(^8\)When only a subset of the eight agents are employed, i.e., in all organizational structure but the one designated by O8, the assignment of agents to the elements of the decomposition is also made randomly.
not encountered, paths may lead on average to 2.78 different equilibria. Of course with structure O1 simulated paths always end on the only agent’s most preferred policy vector.

<table>
<thead>
<tr>
<th>Org. Structure</th>
<th>No. of equilibria</th>
<th>Share of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>O8</td>
<td>2.78 (1.22)</td>
<td>0.78</td>
</tr>
<tr>
<td>O4</td>
<td>1.89 (0.98)</td>
<td>0.74</td>
</tr>
<tr>
<td>O2</td>
<td>1.03 (0.45)</td>
<td>0.58</td>
</tr>
<tr>
<td>O1</td>
<td>1.00 (0.00)</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Table 3: Number of equilibria for different organizations
(n=8, 1000 repetitions, standard deviation in brackets)

Of course in all cases organizational outcomes are on average far both from the principal’s most preferred and from the best performers according to the true ordering of policy vectors, as we did not introduce any mechanisms for aligning them. If we introduce managerial intervention it should be possible to align organizational outcomes with the principal’s objectives. Indeed this obviously happens: as intervention and its cost grow, also control of organizational policy by the principal increases. Table 4 shows the increase of control for organizational structure O8 as costs of intervention increase. Control is measured by the average distance (in terms of difference between ranks) between the realized policy and the principal’s most preferred one (0 meaning full control), whereas managerial intervention is measured by the maximum sum the principal is willing to pay each agent for aligning his choice to her preferences (255 being the maximum amount for always inducing any agent having to choose between two policies to select the one preferred by the principal). Note that, in general, when decision rights are highly partitioned like in O8, full control cannot be achieved because of interdependencies (externalities) among agents: each agent can be induced to choose the policies the principal prefers but only within the policies under his control and given the current status quo of the policies outside his control. Because of externalities, this procedure might never generate, and therefore select, the policy vector the principal ranks highest.
Table 4: Managerial intervention, control, equilibria and cycles for organization O8
(n=8, 1000 repetitions, standard deviation in brackets)

Table 4 also shows that more intervention has another interesting and non obvious effect: it sharply decreases the likelihood of cycles and, on the other hand, increases the number of equilibria. Managerial intervention tends to prevent cycles and at the same time it increases the manipulability of decisions: as the number of equilibria increases, the principal may more easily induce agents to select autonomously an equilibrium close to her own most preferred policy vector.

Very similar results are obtained for organizational structures O4 and O2, where with the highest intervention costs (255) average control is, respectively, 3.75 (standard deviation 0.85) and 0.47 (standard deviation 0.15), the number of equilibria is 32.73 and 12.13 and the percentage of cycles is 4.7% and 1.7%. Organizational structure O1 instead always presents only one equilibrium and no cycles. With strong intervention, full control (average 0.0 and standard deviation 0.0) is always achieved because with only one agent externalities do not exist.

These results have been obtained assuming that the agenda is repeated over and over until an equilibrium or a cycle are reached, and we saw that cycles are in general very likely especially with highly decentralized structures. Of course an easy way to prevent cycles from occurring is to forbid the reiteration of the agenda: once all agents have taken their decision according to the order stated by the agenda the procedure comes to a halt and no further modifications to the policy vector are allowed.

This procedure produces very different results. Table 5 shows the results of simulations in which each agent is allowed to decide only once and in
the order stated by the agenda and there is no managerial intervention. Of course cycles cannot emerge with such a halting rule and simulations show that decision processes can end up in about 42 different policy vectors (not necessarily equilibria, as the process is truncated) for organization O8, 28 for O4, 10 for O2 and, obviously, only 1 for O1.

<table>
<thead>
<tr>
<th>Org. Structure</th>
<th>N. of different final policy vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>O8</td>
<td>41.93 (3.14)</td>
</tr>
<tr>
<td>O4</td>
<td>27.73 (2.45)</td>
</tr>
<tr>
<td>O2</td>
<td>10.30 (1.22)</td>
</tr>
<tr>
<td>O1</td>
<td>1 (0.0)</td>
</tr>
</tbody>
</table>

Table 5: Number of final policy vectors without agenda reiteration and without incentives
(n=8, 1000 repetitions, standard deviation in brackets)

The table clearly shows the source of a possible “divide and conquer” strategy by the principal: by partitioning more finely decision rights and hiring more agents, each of them with responsibility on only very few policies, the principal can more easily and cheaply manipulate the organization’s decision. The table shows the sharp increase in the number of outcome vectors that can be obtained with more fine grained organizational structures and therefore higher possibility of finding an outcome equal or close enough to the principal’s most preferred policy profile. By exploiting this feature, the principal has the possibility of getting high levels of control and performance without using any extra monetary incentive. The following table 6 provides evidence in this direction. The table presents averages and standard deviations of the best control and performance achieved in each simulated problem. By best control we mean the difference between the rank, in the principal’s preference ordering, of the finally implemented policy vector and the rank of the principal’s most preferred vector (which is always 1, by construction). By best performance instead we mean the difference between the rank, in the true preference ordering, of the finally implemented policy vector and the rank of the objectively best vector (which is always 1, by construction). In all the simulations summarized no managerial intervention occurs.
Table 6: Best control and best performance, without incentives
(n=8, 1000 repetitions, standard deviation in brackets)

<table>
<thead>
<tr>
<th>Org. Structure</th>
<th>Best control</th>
<th>Best performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>O8</td>
<td>4.71 (6.63)</td>
<td>4.82 (5.43)</td>
</tr>
<tr>
<td>O4</td>
<td>8.01 (10.43)</td>
<td>8.25 (8.48)</td>
</tr>
<tr>
<td>O2</td>
<td>21.47 (22.67)</td>
<td>22.08 (21.03)</td>
</tr>
<tr>
<td>O1</td>
<td>127.57 (75.98)</td>
<td>128.53 (75.14)</td>
</tr>
</tbody>
</table>

Table 6 shows that high control and/or high performance can be achieved at zero intervention costs in organizational structures where decisions are highly partitioned, whereas if all decisions are delegated to one single agent best control and performance are random. Note that average control and average performance are the same (around 128.5, that is the median rank) for all structures, but best control and best performance are very different. This implies that, whereas in organization O1 the principal can only use intervention in order to get high control and high performance, in organizations with finer partitions of decision rights, and in particular in O8, the principal has the possibility of achieving high control and performance by acting on the distribution of decisions and on the initial status quo, without additional intervention. All in all, in this case organizational structure and managerial intervention are largely substitutes.

4 Adaptively learning principal

Let us now turn to the more interesting and realistic case in which the principal does not know the “right” model of the world and is aware of her ignorance. She holds an ordering of the policy vectors that does not correspond to their true relative performance, i.e. the principal’s ordering is different from the true one. Thus the principal tries to learn the correct ordering by a simple trial-and-error mechanism that will be explained below. When learning is in place, along with trying to have her preferred policies implemented, the principal also tries to sample the performance value of different policy vectors in order to adaptively learn from the environmental feed-backs.
and avoid lock-in into inferior policies. This determines a complex trade-off between aligning the agents’ decisions to the principal’s preferences or letting agents more free to choose policies according to their own idiosyncratic preferences. If, by means of appropriate managerial intervention and/or organizational structures, the principal optimizes such alignment she will have her preferred policies efficiently implemented, but agents who may hold better models of the environment and could implement policies with higher performance may be forced into the straightjacket of the principal’s vision. On the other hand, if the principal leaves higher freedom to the agents of implementing their own preferred policies, she may learn that some of the agents’ ideas may actually perform better in the environment. However she may loose control of the organization and the latter may be finally oriented by some agents to serve their own views and interests.

In this section we examine this trade-off and analyze in particular how the choice of the amount of intervention and the choice of organizational structure interact together in striking a balance in this trade-off. We will assume a very simple learning mechanism for the principal: if at two successive moments in time \(t \) and \(t + \tau \) two different policy vectors \(x_t \) and \(x_{t+\tau} \) are implemented with \(x_t \neq x_{t+\tau} \), the principal may check if their true performance levels are in line with her preferences and swap their positions in her ranking if they are not. On the contrary we assume that agents do not learn and keep their preferences unchanged.\(^9\)

We measure learning with the dynamics of Spearman’s rank correlation between the true and the principal’s orderings of policy vectors. A Spearman coefficient equal to 0 means that the two rankings have no correlation, a coefficient equal to 1 means that the two ranking coincide and the principal has learned the true performance ordering of the policy vectors.

Let us begin the analysis by assuming that the agenda can be reiterated until an equilibrium or a cycle are met. We noticed in the previous section that when the agenda is reiterated cycles are frequently encountered, especially in structures with high partitioning of decisions. When the organization enters in a cycle it is impossible to give a precise definition of learning, as the policy vector does not stabilize. Thus we will consider only the cases in which an equilibrium, rather than a cycle, is the final outcome.

\(^9\)An extension of the present model by allowing that also agents are exposed to environmental signal (possibly mediated by the principal) and adaptively learn will be the object of future research.
With this *caveat*, table 7 summarizes the main results, showing the final Spearman coefficient after decision and learning has taken place starting from every possible initial *status quo* vector. Since initially all agents, the principal and nature are randomly generated, Spearman’s coefficient at the outset is very close to 0 (0.003 with standard deviation 0.063 in this bunch of simulations).

<table>
<thead>
<tr>
<th>Org. Structure</th>
<th>Intervention costs</th>
<th>Final Spearman coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O8</td>
<td>0</td>
<td>0.29 (0.26)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.31 (0.26)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.67 (0.08)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>0.43 (0.06)</td>
</tr>
<tr>
<td>O4</td>
<td>0</td>
<td>0.16 (0.15)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.17 (0.16)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.32 (0.08)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>0.14 (0.06)</td>
</tr>
<tr>
<td>O2</td>
<td>0</td>
<td>0.03 (0.07)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.04 (0.07)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.06 (0.06)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>0.01 (0.06)</td>
</tr>
<tr>
<td>O1</td>
<td>0</td>
<td>0.00 (0.06)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.00 (0.06)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.00 (0.06)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>0.00 (0.06)</td>
</tr>
</tbody>
</table>
Table 7: Learning, organization, and managerial intervention.
With agenda reiteration
(n=8, 1000 repetitions, standard deviation in brackets)

Table 7 shows two main results: first that learning is higher in the organizational structure O_8 and, second, that its relationship with managerial intervention tends to be of an inverted U-shape kind. As to the former result, we noticed in the previous section that the number of equilibria is highest with organizational structure O_8 and therefore also the sampling of different policy vectors is highest with such a structure. At the opposite side, with structure O_1 there is always only one equilibrium, regardless the level of incentives, and therefore there cannot be any sampling and any learning at all. It is worth stressing again that these results concern only cases in which an equilibrium is reached, and in organization O_8 most of the time a cycle is instead encountered.

As to the relationship with managerial intervention, we observed in the previous section that under agenda reiteration stronger managerial intervention produce more equilibria and this is reflected by higher learning. However, when managerial intervention is very high such an effect is offset by stronger control that induces agents to actually select only very few of such equilibria. Thus we observe an inverted U-shape function. Higher levels of managerial intervention also seem to make learning more predictable, as witnessed by the lower standard deviations.

Let us now turn to learning without agenda reiteration. We saw in the previous section that in such a setting the number of actually implemented policy vectors tends to be much higher than in the case with agenda reiteration, except for organizational structure O_1 in which there always is only one vector implemented. This translates into much higher learning than in the case with agenda reiteration, as shown by Table 8. The effect of managerial intervention is instead analogous to the one of Table 7, though the maximum level of learning seems to be reached for lower levels of managerial intervention.
<table>
<thead>
<tr>
<th>Org. Structure</th>
<th>Intervention costs</th>
<th>Final Spearman coeff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O8</td>
<td>0</td>
<td>0.79 (0.04)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.80 (0.4)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.73 (0.05)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>0.45 (0.06)</td>
</tr>
<tr>
<td>O4</td>
<td>0</td>
<td>0.44 (0.06)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.45 (0.06)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.36 (0.06)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>0.15 (0.06)</td>
</tr>
<tr>
<td>O2</td>
<td>0</td>
<td>0.08 (0.06)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.09 (0.06)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.03 (0.06)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>0.01 (0.06)</td>
</tr>
<tr>
<td>O1</td>
<td>0</td>
<td>0.00 (0.06)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.00 (0.06)</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.00 (0.06)</td>
</tr>
<tr>
<td></td>
<td>255</td>
<td>0.00 (0.06)</td>
</tr>
</tbody>
</table>

Table 8: Learning, organization, and managerial intervention. Without agenda reiteration. (n=8, 1000 repetitions, standard deviation in brackets)

Table 7 and 8 show the average final outcomes of the learning processes of 1000 different randomly generated problems. If we observe a single learning
process results are confirmed. The following figures 1 and 2 show one typical learning process for the different organizational structures respectively at 0 and maximum (255) levels of managerial intervention. Figures show that the learning performance of structure O8 is steadily higher. Similar dynamics appear at all managerial intervention levels.

Figure 1: Learning and organizational structures without managerial intervention

To summarize the results obtained in this and the previous section, we could say that organizational structures in which the decisions are finely partitioned show an advantage for the principal in terms of higher manipulability and higher opportunities for achieving high levels of control and performance without relying too much on costly managerial intervention. But such structures also present a dynamic advantage in terms of learning, especially when combined with a medium level of managerial intervention.
Figure 2: Learning and organizational structures with maximum managerial intervention

5 Externalities and the complexity of the organizational landscape

A recent stream of research has investigated how organizations can adapt and learn in complex environments in which the performance of the organization is the outcome of the interaction among organizational traits (Levinthal 1997, Levinthal and Warglien 1999, Gavetti and Levinthal 2000, Marengo and Dosi 2005, Rivkin and Siggelkow 2005). This literature has shown that when such interactions are widespread, non-linear, and imperfectly known, organizational processes of learning and adaptation take place in performance landscapes characterized by multiple equilibria, and, therefore, by sub-optimality, path-dependency, and high sensitivity to small environmental perturbations. However this literature assumes that such interdependencies are exogenously determined by the nature of the “problem” the organization faces or of the “technology” (in the broad sense) it employs.

In this paper we have added to this “cognitive” source of complexity a political one, that is the complexity arising from the interdependencies among
agents. In our model there is a sort of internal and political organizational landscape, whose ruggedness or smoothness is quite independent from the ruggedness or smoothness of the exogenous performance landscape the organization faces.

So far we have reported results of simulations in which agents are all randomly generated without any restriction but transitivity of their individual preferences. This determines environments of maximal complexity, in the sense that externalities tend to involve all policies and all agents. In this section we briefly analyze how different organizational structures and incentives perform when such complexity varies in intensity.10

We have already analyzed in the previous sections how interdependencies among agents generate intra-organizational decision landscapes with multiple equilibria and/or intransitive cycles. If on the other hand such externalities do not exist, cycles and multiple equilibria do not appear and control by the principal becomes easier and cheaper.

Suppose for instance that in organizational structure O8 each agent is concerned only with the policy under his control: agent a_i has random preferences between 0 and 1 for policy p_i (for every $i = 1, 2, \ldots, 8$) but is indifferent on the choices of the other policies. If the principal does not intervene the organization settles into the unique equilibrium in which each agent chooses his own preferred value for the policy under his control, but at a minimum cost the principal can induce each agent whose choice for policy p_i differs from the principal preferred value to switch to the other value. At an average cost of $c \cdot n^2$ the principal can obtain her own most preferred policy vector as the unique organizational outcome.

A similar result, although with higher managerial intervention costs, can be found in all cases in which the distribution of externalities and the distribution of decision rights coincide: if an agent is concerned with a subset of policies he should be allocated decision rights on those policies in order to minimize the cost of control.

However, whenever externalities and decision rights are perfectly aligned and incentives are set to optimize control, the organization can experience only a unique equilibrium outcome. Thus learning – in our strictly adaptive model – becomes impossible. In order to allow learning to take place the

10Indeed there exist already examples of models that concentrate on the complexity of the intra-organizational decision making processes, see for instance Burton and Obel (1980) or Radner (1993).
principal must set managerial intervention to a lower level (thus losing some control) and/or choose an allocation of decision rights that is finer than the scope of externalities11. Just to give an example, if each agent is concerned with two policy issues but is allocated only one of them (thus generating externalities between couples of agents), a final Spearman coefficient of 0.59 is on average achieved between the principal’s and the true orderings at zero incentives, and 0.46 with intervention costs higher or equal to $c \cdot 2$.

Thus, in our model, the organizational design principle of internalizing externalities which is one of the main prescriptions of transaction costs economics, is indeed justified in terms of control optimization12 but not in terms of adaptive learning. In order to increase the level of exploration and foster adaptive learning, externalities should not be entirely internalized within separated decision units.

6 Conclusions and directions for further research

In this paper we have introduced a model that studies the interplay between learning, incentives and allocation of decision rights (the organizational structure) in a generalized agency problem whereby principals and agents have diverging views of the right courses of action for the organization, rather than simply conflicting interests.

Our main results could be summarized as follows. When learning is not at stake, managerial intervention and organizational structure are substitutes. Diverging views among the principal and the agents may be to a large extent diluted by careful organizational design and managerial intervention may be used as secondary devices. Somehow our model tends to support the idea that rules and organization may be more important than authority and incentives in order to align individual behaviors to a common goal.

When instead learning is at stake, organizational structure and managerial intervention may complement each other and have to be fine tuned according to the complexity of the learning process and the competitive pressure which

11A similar argument can be found in Cohen (1984) who argues that some degree of conflict may be a fundamental source for organizational learning.

12We have already remarked, however, that if externalities are very diffused, e.g. every agent’s utility depends on all policies, achieving perfect control may require very costly intervention.
is put on fast or slow learning.

The model is rather rich and only a subset of possible research questions have been examined in the present paper. Among the possible lines of further research is the introduction of some learning process also for the agents, possibly with partial environmental feedback only on the policies under their control. One should also consider the costs of hiring agents that are likely to depend on their span of control. Agents that are given responsibility of larger sets of policies are likely to be more costly, whereas in the present paper such costs have not been considered.

Finally, it would be interesting to model the organizational structure itself as subject to learning. The allocation of decision rights could be modified adaptively, for instance by taking one policy item out of the control of one agent and giving it to the control of another randomly selected agent. This would introduce a new learning process, certainly slower (the space of organizational structures is larger than the space of policies) but that could interact in non trivial ways with the learning of policy profiles. This will be the subject of future work.

References

