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1. Introduction 

In recent years a great deal of attention has been paid to the construction of models 

describing the dynamics of an economy endogenously driven by a knowledge originated 

change in technology. Interesting as it may be, this literature is unsatisfactory as it 

considers the relationship between knowledge and technology as exogenously given. As 

a matter of fact, the construction of a knowledge-based theory of technology is 

considered still an important open issue (Dosi and Nelson (2010), Dosi and Grazzi 

(2010)). Recent works by von Tunzelmann (2003) and Dosi and Grazzi (2006) provide 

interesting suggestions as well as conceptual contributions to this issue: 1  von 

Tunzelmann (2003)2 extends Sen’s capability approach (see Sen (1985)) to production 

theory to provide a conceptual foundation to dynamic capability theory (see, for 

Teece, Pisano and Shuen (1995)). Since the capability approach is a characteristic-based 

approach (Lancaster (1966a))3 which emphasizes the role of knowledge and skills in 

                                                  
1 An additional paper worth of mentioning is Auerswald, Kauffman, Lobo and Shell (2000) which 

develops a model of technology along the recipe approach. However, the model is essentially 

macroeconomic and does not deal with the interrelation between techniques, prices and distribution. 

2 See also von Tunzelmann and Wang (2007). 
 
3Early works on characteristic-based approaches to production are represented by the literature on 

engineering approach to production function (see, e.g.  Chenery (1949), (1953), Marsden, Pingry and 
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extracting characteristics, von Tunzelmann’s work represents a very promising 

for the construction of a model describing the dynamics of an economy originated by 

growth of knowledge. 4 Dosi and Grazzi (2006) point out the existence of a theoretical 

gap between the procedure-centered representation of technology (see, e.g., Winter 

(1968), Nelson and Winter (1977))) and the input/output-centered representation of 

technology, and they use the former approach to justify, within a Sraffa-Leontief 

approach, the “stylized facts” of asymmetries in productivities across and within firms, 

and heterogeneity of relative input intensities and their persistence over time (Dosi and 

Grazzi (2006, p. 180)). Both von Tunzelmann and Dosi and Grazzi explicitly refer to 

“classical” linear production model à la von Neumann-Leontief-Sraffa as the most 

appropriate analytical framework within which to develop a model representing the 

overall economy with a microfounded analysis of production along the proposed view 

(von Tunzelmann and Wang (2007, p. 208), Dosi and Grazzi (2006, p. 196)). Although 

conceptually very interesting and suggestive, these works do not provide any formal 

analysis of the endogenous determination of technical coefficients and associate prices 
                                                                                                                                                  
Whinston (1974)) and more recent works on technical change like Triplett (1985). This literature, 

however, has never developed a systematic analysis of this approach and, in particular, has never 

emphasized the role of knowledge. 

4 Lancaster (1966b) considers explicitly the role of knowledge in determining the technology of 

extraction of characteristics from final goods.  
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and distribution; so we are still far from a rigorous knowledge-based theory of 

explaining technical coefficients, their distribution and dynamics, and associated prices 

and distribution (see also Dosi and Nelson (2010), Dosi and Grazzi (2010)). 

In this paper we extend Lancaster-Sen’s characteristic approach to a linear production 

model à la von Neumann-Leontief-Sraffa and we show that this model is able to 

endogenously determine technical coefficients, prices and distribution; in addition, we 

show that the model is able to deal, although in a very stylized way, with the 

heterogeneity of technical coefficients and with the dynamics of the whole economy as 

driven by the evolution of knowledge. By doing so, the paper provides a first 

contribution to fill in the gap in von Tunzelmann, Dosi and Grazzi’s informal analysis 

by showing that the formalisation of von Tunzelmann’s intuition of extending the 

capability approach to production theory provides an initial step towards a rigorous 

“procedural” foundation of the input-output representation of technology and of the 

evolution of the entire economy itself as endorsed by von Tunzelmann (2003) and Dosi 

and Grazzi (2006) themselves. For the reasons just said, our model can be interpreted 

also as providing a theoretical foundation to the empirical analysis of the “stylized 

facts” in Dosi and Grazzi (2006). 
By following von Tunzelmann and Dosi and Grazzi’s suggestion, the “aggregate 

representation of technological interdependencies” is carried out within the classical 
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approach as formalized by Sraffa (1960) (see, e.g. Kurz and Salvadori (1998), Bidard 

(2004)) where only the price side of the economy and its evolution over time are 

considered.5 A more complete analysis should include also the demand side of the 

economy. This extension could naturally be carried out by using the characteristic 

approach as usually done in consumer theory. We confine our attention to the price side 

of the economy for the sake of simplicity and also for the still unsatisfactory state of 

demand theory in linear production models (for developments taking into account 

demand, see D’Agata (2010)). 

The paper is organized as follows. Next section contains a description of the view of 

technology we propose. Section 3 develops the model within a partial equilibrium 

framework. Section 4 provides a general equilibrium linear multi-sectoral model where 

prices, distribution and technical coefficients are simultaneously determined. Section 5 

introduces a very simple model of adaptive dynamics in the previous model in order to 

deal with dynamics of technical coefficients driven by the growth of firms’ capabilities. 

Section 6 provides some final comments.  

 

                                                  
5 Besides to the articles by Dosi and Grazzi and von Tunzelmann and Wang, the use of the classical 
approach for analyzing issues concerning heterogeneous firms, technical change and structural dynamics 
has been forcefully endorsed, among others, by Pasinetti (1981), (1993) and Landesmann (1988), and it is 
still an area of active research (see, e.g. Quadrio-Curzio (1986), Bidard (2010)). 
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2. Technology 

In this section we develop intuitively a characteristic approach to technology which is 

particularly apt at being integrated within the “procedural” approach proposed by the 

evolutionary theory. According to this approach a production technique is conceived as 

being determined by the firm’s ability “to do something” (see, e.g. Winter (1968)), or by 

firm’s“deep craft” (Arthur (2009)): specifically, in our case, and paralleling Sen’s 

capability approach, a production technique is conceived as being determined by firm’s 

ability to extract (technical) characteristics from inputs. 

Assume that there are n produced goods used as inputs, only one non produced input 

(labour) indicated by n+1, m technical characteristics and Fi firms in industry i,

 1,2,...,i N n  . Indicate by Ni the index set of firms in industry i. Figure 1 illustrates 

intuitively the productive process to produce one unit of good i, i N, by firm if, if Ni. 

The choice variables of firms are the quantities used of the n+1 inputs; however, 

production of the output is assumed to be generated by the amount of technical 

characteristics extracted from the inputs. Based upon the “procedural approach” to 

production, the extraction of  characteristics is interpreted to be determined by the 

“rules” that firms follow in using inputs, which are in turn determined by firms’ (static 

and dynamic) “capabilities” (see, e.g. Richardson (1972), Zander and Kogut (1993), 
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Teece, Pisano and Shuen (1995)). 

Assumption 2.1. In order to produce yi units of good i, iy  , i N, it is necessary to 

use at least yic
i
k units of characteristic k (k = 1,2,…, m), with 0i

kc . Moreover, for 

every good index i, there is at least one characteristic index k, such that 0i
kc . 

 

 

 

 

 

 

 

The m-dimensional non-negative (column) vector of characteristics  i i
kc c  required 

to produce one unit of good i is called the vector of necessary characteristics to produce 

good i. Assumption 2.1. means that the technology to produce output from technical 

characteristics exhibits constant returns to scale; moreover, it requires that the vectors of 

necessary characteristics ci are all semipositive. A possible interpretation of the 

necessary characteristic vectors is that they represent constraints set by “nature”. In 

principle, more complex views of nature in setting these constraints can be conceived 

Production process 

Figure 1 

Capabilities of firm if 

 Inputs Characteristics 
One unit of 

output i 
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(see Section 6). 

As said previously, the characteristics used to produce each good are extracted from 

labour and the n produced goods, according to firms’ capabilities. We indicate by 

( )fi

kjb  the amount of characteristic k that firm if  Ni operating in sector i is able to 

extract from one unit of input j,  1,2,..., , 1j N n n   , for a given capability profile 

in the economy 1 1

 
    ( ,..., ) ( ... )  

i iF i Fi ii

i N i N
K K K  where fiK is the 

knowledge space of firm if.
6  Without loss of generality, we assume that all sets fiK  

are subsets of a k-dimensional Euclidean space.7 The m-dimensional non-negative 

(column) vector ( )fi

jb  of characteristics extracted by firm if from one unit of input j is 

called the vector of extracted characteristics from input j by firm if. Matrix 

 ( ) ( )f fi i

j
j N

B b 


 is called the extraction matrix of firm if and describes the 

technology of firm if associated to the capability profile .8 Given a configuration of 

firms’ capabilities in all industries  K , a technology is a collection of 
1

 :
n

i
i

FN  

matrices  1 ( 1)( ) ( ),..., ( )Fi
ii n

i N
T B B    




  N , one for each sector, associated with a 

                                                  
6 It is worth noticing that we allow for external inter-firms and inter-industry spillovers in line with 

empirical and theoretical literature (Lundvall (1992), Nelson (1993)). 

 
7 Olsson (2000) develops a model of knowledge where the knowledge space is formalised as a subset in a 
finite dimensional metric space. 
8It is reasonable to assume that “nature” sets also a vector i

jb of maximum amount of characteristics that 

can potentially be extracted by one unit of each input, hence  fi m i
j jb x x b    . This implies that 

in each industry the set of feasible extraction matrices is bounded. 
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profile  of firms’ capabilities in the whole economy.  

Assumption 2.2. For every K , ( )f

f

i m
j ib    for every 

f i
i N , iN, and for 

every jN+.  Moreover, from 
fj ix units of input j used by firm if, 0

fj ix  , firm if is 

able to extract vector ( )f

f

i

ji jx b   of characteristics.  

Assumption 2.2. maintains that, given their capabilities, firms have constant returns to 

scale in extracting characteristics from inputs. Also for the extraction technology it is 

possible to conceive more general approaches (see Section 6). 

We conclude this section by presenting an example which translates the “art of 

pin-making” as described by Babbage (1832, p. 133 ff.) into our language. The aim of 

this example is to show in a concrete case that our model of technology can easily 

incorporate a more detailed description of the relation between knowledge, procedures 

and technology. 

Example. Pins are produced by using brass and labour as inputs. The latter exerts seven 

kinds of “mechanical work” or “tasks” on brass (“wire-drawing”, etc.). So the space of 

technical characteristics is an eight-dimensional Euclidean space: the first dimension 

measures the amount of “material” (brass) used in the process, the remaining seven 

dimensions measure the amounts of the seven kinds of tasks (measured in “mechanical 

works”) involved in production. Suppose that c = (1, 1, 1, 1, 4, 2, 2, 1), then in order to 
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produce 1 unit (for example, 1 kg.) of pins it is necessary to provide at least 1 unit (1 

kg.) of “material” (brass), 1 unit (resp. 2, resp. 4 units), for example joule, of task of 

type 1, 2,3 and 7 (resp. 5 and 6, resp. 4). The pin-making technology is defined by a 72 

extraction matrix B = (b1,b2), whose first (resp. second) column b1 (resp. b2) indicates 

the extraction technology for one unit of brass (resp. labour). In order to determine the 

extraction technology, we need a more precise description of the “recipe” used to 

produce pins. To this aim, we adopt the following assumptions, which are consistent 

with Babbage’s view: (i) the amount of wasted material is proportional to the average 

number of tasks (AT) carried out by each worker, for example, 0.1AT; (ii) the amount of 

hourly work exerted by each worker is inversely related to the number of tasks (T), for 

example 10 – T; finally, (iii) each worker employed in more than one task distributes 

uniformly his/her total work on each task. The last assumption means that if a worker 

carries out T tasks, then the hourly work provided in each task is (1 – T)/T. Thus, if, for 

example, we employ one worker per one hour in all seven tasks, by (i), b1 = 

(0.3,0,0,…,0)T and, by (ii) and (iii), b2 = (0, 3/7, 3/7, …, 3/7)T. By contrast if we employ 

seven workers for 1/7 of hour each and in only one task each, then b1 = (0.9,0,0,…,0)T  

and b2 = (0, 9/7, 9/7, …, 9/7)T. 
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3. Endogenous determination of technical coefficients 

In this section, we determine how, given a capability profile K  and associate 

technology of firm if,  ( ) ( )
i f fi

j
j N

B b 


 , this firm determines its input coefficients 

on the basis of a current price vector and distributive variables (i.e. wage and profit 

rates).  

Given a capability profile  K , set 1( ) { | ( ) }f fi in iS x B x c
     is the set of 

feasible methods of production of firm if. An (n+1)N-tuple of feasible methods of 

production, one for each firm, 1( ) ( ,..., )Fi i
i

i Nx x    

1( ) ( ( ) .... ( ))Fi
ii

i N
S S S  


   is said a technique associated to capability profile . 

Assumption 3.1. For every K  and for every 
f i
i N  and iN:  ( )fiS   . 

Moreover, set ( )fiS   is known to firm if. 

The first part of Assumption 3.1 is equivalent to saying that if i
jc  is positive, than the 

j-th row of matrix ( )fiB  is semi-positive. The last part of Assumption 3.1. is obviously 

particularly strong and in the Appendix we relax it by allowing firm if to adaptively 

discover part or the whole set ( )fiS  of feasible methods of production. Although this 

analysis fits particularly with the overall logic of this paper, it is developed separately in 

order to keep the analysis of determination of prices and distribution, and its evolution 

as simple as possible.  
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We associate at each technique 1( ) ( ,..., ) ( )Fi i
i

i Nx x S   
 
its “average” technique 

1 ( 1)( ( )) ( ,..., )n n n
i Nx x    
     defined as follows:  f

ff i

ii
ii N

x x


  with 

0 and 1 
f ff i

i ii F
   . In words, the “average” technique ( ( ))   is obtained from 

the initial technique ( )  by an “aggregation rule” consisting in taking the average of 

methods of production in each sector with weights s
fi . Notice also that an “average” 

technique is represented by a usual input-output matrix 

...

... ... ...

...

n

n nn

x x

A

x x

 
   
  

11 1

1

and by a 

vector of labour coefficients  ...n n nl x x  11 1 . 

Let the price vector p = (p1, …, pn), the profit rate r and the wage rate w be given. 

Vector pr = ((1 + r )p1, …, (1 + r)pn, w) will be called the extended price vector. Given 

the extended price vector pr 
( 1)n
 , a capability profile K and the associated 

technology ( )T  , firm if is assumed to choose its input coefficients in such a way to 

minimize its unit production cost, i.e. it is assumed to choose its method of production 

fix in such a way to solve the following minimization problem.9 

Problem 3.1 (if): min fi

rp x   s.t. ( )f fi i iB x c   with 1fi nx 
 . 

Lemma 3.1. For every 
f i
i N  and iN, Problem 3.1(if) has a solution. 

Proof. The feasible set of Problem 3.1.(i) is set ( )fiS   which is nonempty by 

                                                  

9 According to the definition of extended price vector, it turns out that wages are paid ex post.  
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Assumption 3.1. and clearly closed. Let β be the minimum non-zero element of all 

matrices ( )fiB   and γ be the maximum element of all vectors ci. The ratio γ/β is 

positive from Assumptions 2.1 and 2.2.. It is possible to show that any solution to 

Problem 3.1.(if) restricted to the compact set ( )fiS   

 1( ) 0 2 / ,fi n
jS x x j N

         is a solution to Problem 3.1.(if). Thus, the 

assertion follows from the continuity of the objective function. 

Any solution 
fi

if

a

l

 
  
 

 to Problem 3.1.(if) is obviously a vector of technical coefficients of 

firm if, given an extended price vector pr and given the current capability profile  of 

the economy. Coefficient ajif
 is the usual input coefficient of good j for producing good i 

of firm if, while lif
 is its labour coefficient. A (n+1)N-tuple of solutions, one for each 

firm,
,...,

( , , ; )
,.....,

Fi

Fi

ii

i i
i N

a a
p w r

l l
 



 
 
 
 

1

1

 is called an optimal technique associated to the 

capability profile , to price p and distributive variables w and r. From technique

( , , ; )p w r   we can determine the “average” technique
,...,

( ( , , ; ))
,.....,

n

n

a a
p w r

l l
  

 
  
 

1

1

 by 

using the “aggregation rule” previously mentioned; i.e.  f

ff i

ii
ii N

a a


  with 

0 and 1 
f ff i

i ii F
   . 

Example. It is immediate to check that, in the Example in Section 2, whatever the price 

vector,  in case of employment of one worker the technical coefficient of brass is 
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always equal to 10/17, while the technical coefficient of labour is equal to 28/3, while in 

case of seven labourers specialised in each process, the brass coefficient is equal to 

10/11 and the labour coefficient 28/9.  

4. Techniques, prices and distribution in a linear production model 

Given a capability profile  K and associate technologies ( )T  , and given an 

extended price vector      1
1 1 ,  ,  1 ,  n

r np r p r p w 
     , from Problems 

3.1.(if),
 


f i
i N  and iN, an optimal technique ( , , ; )p w r  is determined, which is 

assumed to be ruling in the economy. This technique, once adopted, will determine 

prices and distribution. If the price vector and distribution associated to this optimal 

technique are the same as the initial ones, then the price vector and the distribution 

variables are consistent with the optimal technology, and in this sense the economy can 

be considered in “equilibrium”. In this section we shall deal with the issue of existence 

of this “equilibrium”. In dealing with this issue, the profit rate will be considered as 

exogenously given at level r ≥ 0. By standard results, our analysis holds true also in case 

in which the wage rate is the exogenous variable.   

Given the heterogeneity of firms in each sector, and following a standard procedure in 

linear models of production, we determine the price vector and the wage rate on the 

basis of an “average” technique ( ( , , ; ))p w r    of the optimal technique ( , , ; )p w r  . 
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To the “average” technique ( ( , , ; ))p w r   , we associate the non-negative price vector 

1' ( ',..., ')np p p  and the non-negative wage rate 'w  defined by the equation: 

(1+r)p′A+w′l = p′.  Prices p′ are called (production or long period) prices associated 

with the (“average”) technique ( ( , , ; ))p w r    while the wage rate w′ and the (given) 

profit rate r are called, respectively, the (long period) wage and profit rates associated 

with the (“average”)  technique ( ( , , ; ))p w r   . At the price vector 'p  and wage 

rate w , firm if will obtain positive, zero or negative extraprofits, according to whether 

its unit production costs are lower, equal or higher than the unit cost of the “average” 

method of production in that industry. These extraprofitsif
, which are substantially 

Sraffa’s quasi-rent (Sraffa (1960, Chapter XI)), are defined by the equation 

(1 ) ' ' 'f

f f

i

i i ir p a w l p     . 

Once the price vector 'p  and wage rate w  are considered, it is natural to ask whether 

they are equal to the initial values, i.e. whether p = p′ and w = w′.  If the answer is yes, 

then technique ( , , ; )p w r   is, obviously, optimal also at prices p′, w′ and r (or, 

equivalently, p w and r). Hence, at the capability profile , technique (p,w,r,) and 

values p′, w′ and r are self-consistent; if the answer is no, then once the extended price 

vector pr′ rules in the economy, technique ( , , ; )p w r  may be displaced by some other 

optimal technique, and an iterative process of adjustment of prices and wage rate, and 
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techniques may be activated. So, as already said at the beginning of this section, the 

former case illustrates a case of “equilibrium” in terms of prices and chosen techniques. 

More formally, given a rate of profit r  0 and a capability profile K, technique 

( )   is said an r-efficient technique if its associated non-negative wage rate w and 

non-negative price vector p are such that ( , , ; )p w r   , i.e. for every i N and for 

every if  Ni vector 
f

f

i

i

a

l

 
  
 

 is a solution to Problem 3.1.(if) with respect to the 

associated extended price vector pr= ((1+r)p1, …, (1+ r)pn, w).10 From what has been 

said previously, the following is evident: 

Fact 1. Technique ( )  is an r-efficient technique at r ≥ 0 if ( ) ( , , ; )p w r    where 

p, and w are the price vector and wage rate (at profit rate r) associated to the “average” 

technique ( ( ))   ; i.e. ( ( ))   satisfies the condition: (1+r) pA+ wl = p. 

In this section we shall show that, given a capability profile K with associate 

technology T(), for every non-negative profit rate r in some interval the iterative 

process of adjustment generated by solving Problem 3.1.(if) in case techniques are not 

r-efficient converges towards an r-efficient technique.  

Assumption 4.1. Vector d = (1, ..., 1 )T Î 1n is the numéraire, that is 
1

1
n

ii
p w


  . 

                                                  
10 It is easy to show that the concept of r-efficient technique is equivalent to the concept of long-period 
(or dominant) technique (at the rate of profit r) usually used by the literature on the classical approach 
(Kurz and Salvadori (1998), Bidard (2004)). 



16 
 

Vector d will be used either with the economic meaning of the bundle used as standard 

of value and also simply as the vector whose elements are all equal to one. The context 

will make it clear the appropriate interpretation for vector d. 

Assumption 4.2. For every K and every technique 1( ) ( ,..., ) ( )Fi i
i

i Nx x S    , one 

has 1
fi n

nx   . 

Assumption 4.2. means that the labour input coefficients are always strictly positive. 

This assumption is ensured, for example, if for all industries i and every firm if there is a 

characteristic k so that 0i

k
c   and 0fi

kjb   for all inputs j except for j = n+1.  

The following result is an immediate consequence of Assumption 4.2.: 

Fact 2. For every K and every extended price vector 1n
rp 

 , the “average” 

technique ( ( , , ; ))p w r   associated to an optimal technique ( , , ; )p w r  satisfies the 

condition: nl  . 

Lemma 4.2. Let 
,...,

( )
,.....,

Fi

Fi

ii

i i
i N

a a

l l
 



 
 
 
 

1

1

be any technique. Suppose that p = (p1, …,pn) 

and w > 0  are associated with the “average” technique ( ( ))
A

l

 
  
 

   and suppose 

also that at the extended price pr = ((1+ r)p1, …, (1+r)pn, w) technique  is not optimal 

while technique
ˆ ˆ,...,

ˆ( )
ˆ ˆ,.....,

Fi

Fi

ii

i i
i N

a a

l l
 



 
 
 
 

1

1

 is optimal. If p′=(p1′, …,pn′) and w′ are the price 

vector and wage rate associated with the “average” technique 
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ˆ ˆ ˆ,...,
ˆ( ( ))

ˆ ˆˆ ,.....,

n

n

a aA

l ll
  

   
         

1

1

 , then w′ > w.  

Proof. By assumption, ˆˆ(1 ) (1 )f f

f f

i i

i ir pa wl r pa wl      for every if Ni and every i 

 N, moreover, at least one of the previous inequalities must be satisfied as a strict 

inequality. Thus, the “average” methods of production satisfy the inequalities 

ˆˆ(1 ) (1 )i i
i ir pa wl r pa wl     , iN, with at least one inequality satisfied as strict 

inequality. The assertion then follows from standard results (see Kurz and Salvadori 

(1998), Bidard (2004)).  

By taking into account Assumption 4.2., the following general result is standard in the 

literature on linear economies (see Bidard (2004)): 

Fact 3. For every technology (), every associated average technology  ( ( ))    and 

every profit rate 
 

  
 



1 ( )
1,

( )

A
r

A
, a positive wage rate w and a positive price vector 

p such that p = (1+r)pA+wl are uniquely determined, where (A) is the Frobenius root 

of matrix A. Moreover, 
1

1

1 [ (1 ) ]
w

l I r A d
  

 and 1[ (1 ) ]p wl I r A    . 

Notice that in the previous result the interval 
 
 
 



1 ( )
1,

( )

A

A
 may be a subset of the 

negative real numbers, so the rate of profit may be negative. In order to avoid negative 

profit rates we introduce the following assumption: 

Assumption 4.3. For every K there exists a technique ( ) ( )S   whose “average” 
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technique ( ( ))    satisfies the condition: i

i N

a d


 . 

Assumption 4.3. implies that for every K, there exists a technique ( ) ( )S    

whose input-output matrix A of its “average” technique ( ( ))   satisfies the condition: 

(A) < 1. Therefore, according to Fact 3 for every (non-negative) rate of profit in the 

non-degenerate interval
 

 
 



1 ( )
0,

( )

A
r

A
 the “average” technique ( )  has a unique 

positive wage rate and a unique positive price vector. Since we are interested only to 

non negative price vectors and distribution variables, from now on, for every K, we 

shall consider only techniques in the non-empty set 

( ) ( ) ( ) ( ( )) , ( ) 1
A

S S A
l

        
   

        .  

Proposition 4.1. below represents r-efficient techniques as limits of sequences of 

optimal techniques generated by solving iteratively Problems 3.1(if), with if  Ni and i  

N, as follows: given r ≥ 0, K and associated technology T(), take an arbitrary 

technique 
( ),.., ( )

( ) ( )
( ),....., ( )

Fi

Fi

ii

i i
i N

a a
S

l l
  



 
  
 
 

1

1

0

0 0

0 0
 (set S+() being non-empty because of 

Assumption 4.3.) and consider its “average” technique 0
0

0

( ( ))
A

l

 
  
 

    and its 

associated w0 and p0, where 0
np   and w0 > 0. For each if, consider a solution 

1( (1), (1))f

f

i T n
ia l 

 to Problem 3.1(if) with respect to 0 0 0((1 ) , )rp r p w  . An optimal 
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technique 
( ),..., ( )

( , , ; )
( ),...., ( )

Fi

Fi

ii

i i
i N

a a
p w r

l l
 



 
 
 
 

1

1

1 0 0

1 1

1 1
is therefore obtained with respect to the 

0rp , and let 
1

1
1 0 0

1 1

(1), , (1)
( ( , , ; )) :

(1),......, (1)

n

n

A a a
p w r

l l l

  
    
   

    be the “average” technique 

associated to this technique. Its associated wage rates and price vector are w1 and p1 

with w1  w0, where the last inequality is a strict inequality if ( ) 0  is not an r-efficient 

technique, by Lemma 4.2.. Let 1(2)

(2)

f

f

i

n

i

a

l



 
  

 
  be a solution to Problem 3.1.(if) with 

respect to 1 1 1((1 ) , )rp r p w  .  A new optimal technique 

( ),..., ( )
( , , ; )

( ),....., ( )

Fi

Fi

ii

i i
i N

a a
p w r

l l
 



 
 
 
 

1

1

2 1 1

2 2

2 2  is therefore obtained with respect to the this 

extended price vector 1p  and let 
1

2
2 2 1 1

2 1

(2), , (2)
( ( , , ; )) :

(2),......, (2)

n

n

A a a
p w r

l l l

  
    
   

    be 

the “average” technique associated to this technique with associated w2 and p2 with  w2 

 w1. By iterating this process, a sequence 

 
1

1

1 1 0,1,2...

( ),..., ( )
( , , ; ) ( )

( ),....., ( )

Fi

Fi

ii

h h h h
i i

i N

a h a h
p w r S

l h l h  



          
    of optimal techniques is 

generated (where 0 1 1 0( , , ; ) ( )p w r      ). This sequence is called an 

r-cost-minimizing sequence starting from 0 ( )  . Notice that a sequence  
0,1,2,....h h

w  of 

wage rates and a sequence  
0,1,2,....h h

p  of price vectors are implicitly defined for any 

r-cost-minimizing sequence starting from 0(). 
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Proposition 4.1. Let 
( ),..., ( )

( ) ( )
( ),....., ( )

Fi

Fi

ii

i i
i N

a a
S

l l
  



 
  
 
 

1

1

0

0 0

0 0
be a technique and let   

0

0

1 ( )
0,

( )

A
r

A




 
 
 

. Let  p0  0 and w0 > 0 the price vector and the wage rate associated 

with the “average” technique 0
0

0

( ( ))
A

l

 
  
 

   .  Then any r-cost-minimizing sequence 

starting from  
0
( )  has at least a convergent subsequence whose limit is an r-efficient 

technique.  

Proof. Denote by  the set of r-efficient techniques in S+(). For all h = 0,1,2,…., 

technique ( )h   belongs to the compact set, 1 1( ) ( ( ) .... ( ))F Fi i
i ii i

i N
S S S  


  

where sets ( )f fi iS   have been defined in the proof of Lemma 3.1. Define set 

1
: ( ) ( ) | ( ( )) , ( )

1

A
S S A

l r

  
        

        and the mapping: : S S    by 

the rule 1 2

1 2

ˆ ˆ ˆ, ,...,
ˆ ˆ( ( )) ( ) ( ) ( ) ( , , , ),  

ˆ ˆ ˆ, ,.....,

Fi

Fi

ii i

i i i
i N

a a a
S p w r

l l l




           
         

where ,  and  satisfy (1 ) and ( ( ))
A

p w r r pA wl p
l

 
     

 
   ; i.e. mapping  

associates to each technique ()  the set of techniques which are optimal at the price 

vector and wage rate generated by ( ( ))   . By definition, any cost-minimising 

sequence starting from 0() satisfies the condition: 1( ) ( ( ))h h      with h = 

0,1,2,…… By Fact 3 and the continuity of the “aggregation” rule function :w S    
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defined by 
1

1
( ( ))

1 [ (1 ) ]
w

l I r A d
  

  
for 

1
( )

1
A

r
 


 and ( ( )) 0w     for 

1
( )

1
A

r
 


 is continuous and, moreover, by Lemma 4.2.: w(h()) < w(h+1()) if 

( )h    and 1( ) ( ( ))h h      . Finally, it is also possible to check that  is an 

upper hemi continuous correspondence. Thus, every convergent subsequence of the 

cost-minimising sequence ( )h   starting from 0 ( )  has a limit in  (see Bazaraa, 

Sherali, Shetti (1993, p. 249)).  

Proposition 4.2. Let   

 
  
 
 

1 2

1 2

0

(0), (0),..., (0)
( ) ( )

(0), (0),....., (0)

Fi

Fi

ii i

i i i

a a a
S

l l l
 be a technique and 

0

0

1 ( )
0,

( )

A
r

A




 
 
 

. Then the wage rate sequence  
0

h h
w


associated with any 

r-cost-minimizing sequence starting from 0() converges to the same limit w*, where

* max (1 ) ,  , ( ( )) , ( ) ( )n A
w w p r pA wl p S

l

            
   

        . Moreover, this 

limit is independent upon the initial technique 0(). 

Proof Let  1 1 0,1,2,...
( , , ; )h h h h
p w r  

   be an r-cost-minimizing sequence starting from 

( ), ( ),..., ( )
( )

( ), ( ),....., ( )

Fi

Fi

ii i

i i i
i N

a a a

l l l
 



 
 
 
 

1 2

1 2

0

0 0 0

0 0 0
. By definition of r-cost-minimizing sequence, for 

every h, 1 1(1 ) (1 )h h h h h h h h hp r p A w l r p A w l       . From Lemma 4.2, wh ≤ wh+1, 

with strict inequality if  h() is not optimal at prices ph and wage rate wh. Because of 
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Assumption 4.1., p1 + … + pn + w = 1; hence w ≤ 1, since p ≥ 0. Therefore, sequence 

{wh} is monotonously non-decreasing and upper bounded, so it is convergent. Let w* be 

its limit. Suppose now that there exist two initial techniques , ′S+ (), with 

  ′, whose r-cost minimising sequences starting from  and ′ have, 

respectively, w* and w*′ as limit wage rates, and suppose that w*  w*′. Without loss of 

generality we can assume that w* < w*′. Hence, by standard results (see, for example, 

Kurz and Salvadori (1998), Bidard (2004)), it can be shown that there must be an 

industry index i such that (1 ) * ' * ' (1 ) * *i i
i ir p a w l r p a w l     which contradicts 

Proposition 4.1, by exploiting the properties of the “aggregation rules”. Hence, w* = w*′. 

A similar argument proves the last assertion. 

The unique wage rate w* yielded by all r-efficient techniques associated with a 

capability profile   K is called the r-efficient wage rate of capability profile .  

 

5. Dynamic capabilities and the evolution of technology 

Two facts widely accepted by the economic literature are that firms have limited 

knowledge of the set of all possible technologies and, consequently, that they behave 

adaptively (see, e.g., Nelson and Winter (1982)), and that firms’ capabilities evolve 
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incessantly over time (see, for example, Teece, Pisano and Shuen (1995)). In this section 

we shall extend the static model developed in the previous sections to allow for adaptive 

changes in industry technologies as driven by the evolution of firms’ capabilities. As 

already said, the Appendix deals with the case of evolution of firms’ techniques. We 

obtain a model describing an economy in which dynamic capabilities generate a 

ceaseless change in technologies and in their associated r-efficient techniques, price 

vectors and wages. Given that r-efficient techniques are actually long period techniques 

at rate of profit r (see footnote 12), our dynamic process has a strong marshallian 

flavour in terms of his distinction between secular and long period configurations (see 

Marshall (1890, p. 315). For a recent restatement of this view, see Arthur (2009, p. 

200)).  

In addition to the assumptions already made, in this section we shall adopt two 

additional technical assumptions: 

Assumption 5.1. For every and ,f ii F i N   set fiK is compact; moreover, for every 

j N  the mapping :fi m
kjb K   defined by the vectors of extracted characteristics 

associated to each knowledge profile are continuous functions. 

Assumption 5.2. There exists a positive number  such that, for every  ÎK and every 

 and ,f ii F i N   the non-zero elements of matrices ( )
i if fB  are not lower than . 
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Recall that for any capability profile  K , we have an associate technology 

   ( ) ( ) ( )
i f f

f i f i

i

ji N i Nj N
i N i N

T B b  


 
 

    
 

. By Assumption 5.1., the set 

 ( ) mQ T K 
    N  of possible technologies (i.e. the set of possible extraction 

characteristic matrices in all industries generated by all possible states of firms’ 

capabilities) is a compact set. The minimum  of non-zero elements of every matrix 

( )
i fB   is positive for all  ÎK by Assumption 5.2.. On the other hand, let γ be the 

maximum of the elements of the matrix (c1, ..., cn). For  ÎK set ( ) ( )S S   , 

where ( 1) 2
: ( ) | ,  ,  ,  

f f

n
ji ji f ix x j N i F i N 

 

 
       

 




N . Obviously, ( )S   is 

compact and non-empty for all ÎK.11  

Lemma 5.1. Correspondence : S Q  is continuous. 

Proof. Let 0,1,2,....{ }t
t  be an arbitrary sequence of capability profiles in K converging 

to  K. By continuity lim ( ) ( )f fi it

t
B B


 

 
for every if Ni, and 0,1,2..{ }t

t   be an 

arbitrary sequence of techniques with 1( ,..., ) ( )Fi i
it t t t

i Nx x S   , converging to 

technique 1( ,..., )Fi i
i

i Nx x  . Then, ( )f fi i tt iB x c    and fi tx   for every if Ni, 

iN and t. Therefore, ( )f fi i iB x c   and fix  for every if Ni and iN. It follows 

                                                  
11 Non emptiness follows from the fact that for every ÎK , every if Ni, i = N and j 

N+:
2

( )fid S
 


 and 
2ˆ ( )fi

j jib d c



 if cji > 0, where ˆ ( )fi

jb   is the j-th row of 

matrix ( )fiB  . 
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that ( )S  , hence S  is an upper hemi-continuous. 

Next, suppose that S  is not lower hemi-continuous. Then, for some ÎK, some τ Î

( )S  and some ε > 0, there exists a sequence 0,1,2,..{ }t
t  in K so that lim t

t
   and 

( ) ( , )tS U      for all t where ( , ) : { ' || ' | }U           , but this is not 

possible. As a matter of fact, let ' (( ' ) )
f

f i

ji j N i N
i N

x
 


 be a matrix in ( 1)n 


N  so that 

' 1 2
: min ,

2 ( 1)fji ijx x
n

 
    

 
N

. Then, ' ( , )U   , and for every if Ni, iN and 

jN+, ˆ ( )( ' )
f

f i

i
j ji j N ji

i N

b x c



  if cji > 0, where ˆ ( )fi

jb   is the j-th row of ( )fiB  . Then, 

by continuity, for every small enough ε′ > 0, for all ' ( , ')KU    and for every if Ni 

and iN, we have ˆ ( ')( ' )
f

f i

i
j ji j N ji

i N

b x c





 

 if cij > 0. This implies ( ')( ' )f

f

f i

i i
ji j N

i N

B x c



  

for every if Ni and iN, and therefore, ' ( ')S  . Then, for t large enough, 

' ( , )U    and ' ( )tS  . This contradicts that ( ) ( , )tS U      for all t.  

 

Let λm() be the minimum of Frobenius roots of feasible “average” techniques 

associated with the capability profile  Î K,  i.e. 

( ) min ( ) | ( ( )) , ( ) ( )m

A
A S

l

  
     

  
         . Notice that λm() is well 

defined because ( )S   is compact by Assumption 5.1. and function : n n 
    is 

continuous.  

 

Lemma 5.2. Function :m K   is continuous. 
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Proof Immediate from Lemma 5.1, from the continuity of  and from Berge’s 

maximum value theorem.  

 

Define Λ by  max ( ) |m K     . Λ is well defined because K is compact and λm 

is continuous by the previous lemma. Define Π by 
1

 


 for Λ ≠ 0 and Π= ∞ for Λ 

= 0. Λ < 1 holds obviously from Assumption 4.3, and therefore Π > 0. If r < Π holds, 

there is some technique ( ) ( )S    for all  ∈ K so that 

1 ( )1 1 ( )

( ) ( )
m

m

A
r

A

 
    


  

  
, where ( ( ))

A

l

 
  
 

   .  

By Proposition 4.2., the r-efficient wage rate associated to the capability profile  ∈ K 

is uniquely determined, hence for every  (0, )r  , the mapping :rw K  

associating the r-efficient wage rate ( )rw  to each capability profile  ∈ K is a well 

defined function.  

Lemma 5.3. Function :rw K    is continuous. 

Proof. Let  ∈ K, then, as usual, we have an associated technique

, ,...,
( )

, ,.....,

Fi

Fi

ii i

i i i
i N

a a a

l l l
 



 
 
 
 

1 2

1 2

 and the associated “average” technique 
( )

( ( ))
( )

A

l

 
  
 




  


with ( ) n nA  
 and ( ) nl   .  Define for each (0, )r   a function 

( , ) :w r K    as follows: 
1

1
( , )

( )[ (1 ) ( )] 1
w r

l I r A d
  


 

 for 
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1
( ( ))

1
A

r
  


, and w(r,) = 0 for 

1
( ( ))

1
A

r
  


. Then, by the continuity of the 

“aggregation” rule and the mapping associating to each capability profile  a 

technology T(), for every (0, )r  , w(r,) is continuous on K. Define the function 

ˆ :rw K   by the following rule 

 1( )
ˆ ( ) max ( , ) max 0 | (1 ) ( ) ( ), 0, 1 

n

r iiS
w w r w p r pA wl p p w


         

    and 

( )
( ) , ( ) ( )

( )

A
S

l


    


 

   
  

 .  Since correspondence S  and function w are 

continuous, function ˆ rw is continuous because of Berge’s maximum value theorem. 

Since an r-efficient technique exists in ( )S   and any r-efficient technique has a 

common wagre rate equal to the r-efficient wage rate, and since ( , ) ( , ')w r w r 

whenever ( ) and ' ( ) ( )S S S  \     , then
( )

ˆ ( ) max ( , )r
S q

w w r


 


  ( )rw    

( )
max ( , )

S q
w r


 .  

The extraction of characteristics is envisaged to depend on time-dependent variables 

such as experience, knowledge etc. (see Dosi and Grazzi (2006)). Thus, as already 

pointed out, it is natural to allow for changes of technology over time driven by the 

evolution of capabilities. We maintain that the evolution of capabilities is determined 

endogenously through a process of adaptive dynamics, which is formalized as follows 

(see also D'Agata (2005, 2010)): At time 0, a capability profile 0 is given and an 

r-efficient technique 0 with wage rate wr(0) is associated to it for some non-negative 
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profit rate r. By using capability profile 0 in period 0, firms expand their knowledge 

and skills (i.e. they acquire new capabilities) ``around'' the current profile . At time 1, 

firms have a set of feasible capabilities (0) available and in that period they choose 

the optimal capability profile 1, which is the one whose associated r-efficient wage rate 

wr(1) is maximum with respect to the r-efficient wage rates of all feasible capabilities 

profiles. And so on. As time passes, we obtain a sequence of sets of capability profiles 

discovered each time and an associated sequence of r-efficient techniques and prices 

and wage rates. For any initial capability profile, we will show the existence of a 

converging subsequence of capability profiles and of associate r-efficient techniques 

and wage rates such that the limit capability profiles can be considered Marshallian 

(local) “secular equilibria”. Let : K K be the capability evolution correspondence; 

if t is the capability profiles chosen at time t, set ( )t   is interpreted as the set of 

capability profiles discovered at that time and which are available for production 

activities at time t+1. This correspondence should catch the idea that firms have not 

complete knowledge of the whole knowledge set, and that new capabilities (and 

associated technologies and techniques) are discovered over time. This also implies that 

knowledge growth and technical change are eminently local in character (see Atkinson 

and Stiglitz (1969), Antonelli (1995)). 
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Assumption 5.3. The capability evolution correspondence ψ is compact valued and 

lower hemi-continuous, with ( )    for all  Î K.  

The last condition in Assumption 5.3. is not essential for our results. It is adopted for its 

obvious and reasonable economic meaning. Let r ≥ 0 and let 0 be the initial technology, 

and 0( )r   and 0( )rw   be respectively an r-efficient technique and the (unique) 

r-efficient wage rate associated with the capability profile 0. An adaptive process 

0,1,2,...{ }t
t  starting from 0 is defined by the rule: 1

( )

: arg max ( )
t

t
rw




  
   for 

0,1,2...t  . For some r  0, a capability profile ÎK is an r-local secular equilibrium 

(r-LSE) if 
' ( )

( ) max ( ')r rw w



  

  . As already said, the concept of r-LSE is very close to 

Marshall’s concept of “secular equilibrium”. 

The adaptive process is well-defined as function wr is continuous by Lemma 5.2, and 

the capability evolution correspondence ψ is compact valued, by Assumption 5.3.  

Lemma 5.4. For any initial capability profile  K and for every (0, )r  , any 

adaptive process starting from  has a convergent subsequence. Moreover, the sequence 

of the associated r-efficient wage rates, 0,1,2...{ ( )}t
r tw   , converges as t →∞. 

Proof . The first part is an immediate consequence of the Bolzano-Weierstrass property 

of metric spaces.  As for the last part, from Assumption 5.3, ( )t t    so that 

1( ) ( )t t
r rw w    for all t ≥ 0. Because of Assumption 4.1. and p ≥ 0, w ≤ 1. Then, 
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since the sequence 0,1,2...{ ( )}t
r tw    is monotonously non-decreasing and upper bounded, 

it converges. 

 

Proposition 5.1. For every 0ÎK and for every (0, )r  , the limit of every adaptive 

process starting from 0 is an r-LSE. 

Proof Let 0ÎK the initial technology and (0, )r  . Let 0,1,2..{ }t
t   be a convergent 

subsequence of an adaptive process starting from 0, and with limit  . We assume 

counterfactually that   is not an r-LSE. Then, there exists a capability profile 

' ( )    so that ( ) ( ')r rw w  . Hence, ( ) ( )H       where 

 ( ) ( )rH K w       and ( ) ( ')r rw w    . By lower hemi continuity, for t 

“big enough” ( ) ( )tH       which contradicts the definition of t , because 

( ) ( )t
r rw w   by what has been said in the proof of Lemma 5.4..  

Finally, it may be useful emphasise again that also the dynamic analysis has been 

carried out for a given rate of profit and increasing wage rates. The choice of the rate of 

profit as exogenous distributive variable, as it is well known by the literature on linear 

production models (see Kurz and Salvadori (1998) and Bidard (2004)) is only a matter 

of analytical convenience, and the same results could have been obtained by giving the 

wage rate exogenously.  
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6. Final remarks 

In this paper we have developed a characteristic-based model for the endogenous 

determination of technical coefficients in a linear economy. Our model provides a 

rigorous analysis of endogenous determination of technical coefficients and associated 

production prices and distribution by using an approach which is easily interpretable in 

terms of the “procedural” approach to technology. In this sense, it can be interpreted as 

an attempt to fill in the gap, emphasized by Dosi and Grazzi (2006), between the 

procedure-centered and the input-output-centered representation of technology, by 

formally developing the characteristic-based view proposed by von Tunzelmann (2003). 

A simple dynamic analysis is also provided, which provides a formalization of the 

adaptive evolution of technology and techniques over time driven by the evolution of 

firms’ productive capabilities.  

We have explicitly allowed for heterogeneity of firms in terms of capabilities in line 

with the literature (see, e.g. Dosi (1982, 2000), Metcalfe (2010), Dosi and Nelson 

(2010)). This makes our model a theoretical foundation to Dosi and Grazzi’s work on 

the distribution and evolution of technical coefficients in linear economies (Dosi and 

Grazzi (2006)). Heterogeneity of firms is endogenised in the Appendix by replacing the 
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second part of Assumption 3.1. with the assumption that firms discover the set of 

feasible techniques over time according to the same model of adaptive dynamics used in 

Section 5. As emphasised in other works (see D’Agata (2005, 2010)) this adaptive 

dynamics can additionally deal with widely recognised phenomena like lock-in and 

dynamic inefficiencies. D’Agata (2010) shows also that our model of technical change 

is able to deal with changes in the number of produced goods.  

The description of technology and knowledge here proposed has been deliberately kept 

here at the most simplest possible level. As it has just been said, it is possible in 

principle to remove the assumption that firms have a complete knowledge of the set of 

feasible techniques (Assumption 3.1.). It is possible also to develop a more complex 

description of technology by removing the assumption of linearity in the extraction 

technology (Assumption 2.2.) and by removing the assumption of a unique vector ci of 

minimum characteristics in each industry (Assumption 2.1.) or by replacing it by a more 

general description of minimum requirements for production. These generalisations are 

not done here as they can fruitfully be carried out only with reference to specific issues 

in production theory. The same remark holds true for the formalisation of knowledge 

which in this paper has been done in a very simple way. Clearly, these formalisations 

are worth of future attention. 
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APPENDIX 

In this appendix we endogenise the heterogeneity of firms by weakening the last part of 

Assumption 3.1., i.e. by allowing firms to know only a subset of their set of feasible 

techniques and to adaptively adopt techniques as their knowledge of the feasible set of 

techniques changes over time. The model will be developed in a sketchy way as, from 

the formal point of view, it is similar to the one developed in Section 5. Since the model 

can be interpreted as a “short-period” version of the dynamics considered in that section, 

the dynamics here considered should be interpreted as a “fast” dynamics occurring 

within each period considered in Section 5. This means that in what follows the 

capability profile of the economy ∈ K and the extended price vector pr=((1+r)p1, 

(1+r)p2, …, (1+r)pn, w) will be here considered given. 

Give  ∈ K , the set of feasible techniques ( )fiS   is therefore given as well. Like 

the dynamics in Section 5, time is discrete (with the qualification previously given) and 

we assume that whenever firm if is using a technique x, then, during the relevant period 

it “discovers” set 
if(x)  ( )fiS  . Mapping : ( ) ( )f f fi i iS S   is assumed to be lower 

hemi continuous. 

If at time t-1 firm if is using technique xt-1  ( )fiS  , then Problem 3.1.(if) becomes: 

Problem A(if): min rp x  s.t. xt  fi (xt-1).  
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Given any initial technique fix0  ( )fiS   and assuming a strictly positive vector pr, it 

follows that any solution to Problem A(if) must belong to a compact set ( )fi nS  
 1

(see also the proof of Lemma 3.1.). Thus, from Problem A(if) we obtain a sequence 

 
, , ,...

fi

t
t

x
0 1 2

 of techniques in ( )fiS  . By using the argument in Section 5, it is possible 

to show that this sequence converges to some technique ( )
f

f f

f

i
i i

i

a
x S

l


 
   
 

 so that 

'fi

r rp x p x    for every ' ( )f fi ix x ; i.e. technique ( , )f f

f

i i

ix a l  is a local 

optimum. Given that each firm may start from a different initial technique fix0  and/or 

may have a different “exploration” maps fi , it is possible that the optimal techniques 

( , )f f

f

i i

ix a l differ from one firm to another firm in the same industry and may not be 

an optimal technique in the sense of Problem 3.1.(if). 
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