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Abstract
In this paper we argue that the determinants of tie formation in R&D networks vary over time, driven by technology
evolution. In our theoretical argument, we pay particular attention to the role of new firms. Firms entering early into the
network are typically established firms; firms entering in the mature phase of network evolution are young and
specialized. The theoretical hypotheses we formulated are tested on a sample of 681 technological alliances in the
telecommunications industry during the period 1991-2001, which provide general support for our hypotheses. 
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1.INTRODUCTION  

The aim of this paper is to study the determinants of tie formation in R&D networks. 

Networks are nowadays considered a central aspect to understand innovation in the more 

knowledge intensive industries (Powell and Grodal, 2004), both from the managerial and 

policy perspectives. For that reason, a large body of evidence now exists on the issue, which 

identified both endogenous determinants (associated to the influence of past network 

architecture) and exogenous determinants (such as the technological profiles of firms) of tie 

formation.  

However, the extant literature tends to neglect the possibility that the role of the various 

determinants of tie formation may vary over time. Instead, this possibility appears as relevant, 

if one considers the empirical evidence of the dynamics of tie formation: networks seem to be 

characterized by cyclical behaviour, where periods of growth in the number of newly 

established agreements are followed by periods of sharp decline.  

We argue that this cyclical behaviour is driven by the underlying (cyclical) behaviour of 

technology evolution, and this may lead to a different role of tie formation determinants over 

time. In our theoretical argument, we pay particular attention to the role of new firms. In our 

context, newness is considered both in terms of network participation and age. What we claim 

is that the characteristics of firms entering the network also change over time. Firms entering 

early into the network are typically established firms, which possess the relevant 

technological capabilities in the fluid phase of the technology; firms entering in the mature 

phase of network evolution are young and specialized, providing (typically to incumbents) 

specific knowledge assets. 

The theoretical hypotheses we formulated are tested on a sample of 681 technological 

alliances in the telecommunications industry during the period 1991-2001. After having 

divided our sample in an early phase (1991-1993) and a mature phase (1994-2001) of network 

evolution, we found general support for our hypotheses.  

We believe that our results are of particular relevance for knowledge-based entrepreneurship. 

The existing literature, relying on the evidence of path dependent mechanism of network 

evolution, stresses the importance of early entry for the viability and growth of new firms. 

Our results qualify this claim, in the sense that, at a beginning of the network cycle, entry into 

the network by new firms may be hard for reasons that are related to the stage of 

technological evolution, which causes their low attractiveness as partners, rather than for their 

peripheral position in the network. Since we do find also in our data the self-reinforcing effect 

driving network evolution, our results suggest the existence of a “window of opportunity” for 

new firms in the network: while entry may be too difficult in the first phase of network 

evolution, new firms entering early in the network relatively to other new firms may 

nevertheless obtain a strategic advantage.  

The rest of the paper is organized as follows. Section 2 develops our appreciative argument. 

First we provide some evidence on the existence of network cycles. We then briefly review 

the determinants on R&D tie formation, with this being functional on the formulation of 

hypotheses of the relative role of such determinants over time. Section 3 describes our data 

and introduces the econometric model, while Section 4 presents and comments upon the 

results. Finally, Section 5 concludes.   

2. TIE FORMATION OVER THE NETWORK LIFE CYCLE  

Central to this paper is the notion of network life cycle. In management studies and in 

economics, the notion of life cycle has been traditionally applied to products or industries, 

reflecting the view that product sales or the evolution of industries go typically over a number 
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of stages, from birth, through growth, to maturity and eventually decline. When applied to 

industries (Klepper, 1997), different stages are associated to specific patterns of firm entry 

and exit, innovation and growth rates. Along this line, in this section we intend to sketch an 

argument on the network life cycle that discusses the networking activity of firms and the 

identity of firms that are most active in the different stages of the network. 

The section is divided in three paragraphs. First of all, we provide some empirical evidence on 

technological alliances that can motivate, in our view, the life cycle perspective. Then, we 

provide a brief review of the literature on network dynamics and tie formation, on which our 

theoretical considerations hinges upon. Finally,  Section 2.3 outlines our view of the network 

life cycle, relating network evolution to the existing view of technological evolution. 

 

2.1 Some evidence on the life cycle of alliances networks 

 

Although historical examples of cooperation in the technological realm are not rare (Allen, 

1983), interfirm technological agreements seem to have become relevant only in the relatively 

recent times. This is what suggests the analysis of large, word-wide literature-based datasets 

such as the MERIT-CATI database and the SDC Platinum database by Thompson (Zirulia, 

2009).  

Figure 1 reports the number of newly established agreements, worldwide and for all sectors, 

as reported in the CATI database (Hagedoorn, 2002). It is shown that, after a limited growth 

in the 1960s and 1970s, the number of agreements has exhibited significant growth rates in 

the 1980s, and after that a cyclical behavior with a positive trend in the 1990s. 

Figure 1: Newly established R&D partnership (1960-1998) Source: Hagedoorn (2002), MERIT-CATI database. 

 

 

The SDC Thompson database pictures a slightly different behaviour. After the growth at the 

end of the 1980s, the cycle at the beginning of the 1990s is not observed, while as long as the 

period 1998-2002 is concerned (which is not included in Figure 1), the negative trend seems 

to continue. 
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Figure 2: Newly established R&D agreements (1985-2002). Source: SDC Platinum, Thompson Financial  
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Using the MERIT CATI database, Hagedoorn and van Kranenburg (2003), show that the time 

series for newly established link (period 1960-1998) is largely of a non stationary nature, and 

a white noise model quite adequately fits the data. Hagedoorn and Vonortas (2002) find 

similar results analyzing the time series concerning the subset of alliances including at least a 

U.S. firm. Moreover,  their econometric analysis indicates causal relationships between 

macroeconomic variables and the number of new agreements.  

While aggregate data are suggestive of the general relevance of the phenomenon, it cannot be 

forgotten that they result from the aggregation of sectoral data, for which the specificities of 

the technological environment are most likely to have an influence also on the networking 

activity of firms (Malerba, 2005). 

To the best of our knowledge, no previous study has investigated the technology and industry-

specific determinants of the long run behaviour of technological alliances. However, 

descriptive evidence and some historical analysis show that cyclical behaviors are typically 

observed also at the level of single technology/industry. 

Figure 3 reports the absolute number of new agreements in three sectors (semiconductors, 

pharmaceuticals, biotech research) as reported in SDC database. Cycles are evident. 
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Figure 3: Newly established R&D agreements: selected sectors. Source: SDC, Thompson Financial  
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Cloodt et al. (2010) look at the evolution of the R&D network in the global software industry 

from 1970 to 1999. The networking activity was almost absent during the 70s, where the 

prevailing business model involved vertical integration and internal control of new 

technologies in the computer hardware industry (Bresnahan and Malerba, 1999), and leading 

computer companies manufactured not only computers but they also produced the 

microelectronics, provided operating systems, application software and software services that 

came with these computers. In contrast, a significant upsurge in the number of agreements is 

observed in the 80s, with the growth of the PC-based mass-market software segment during 

the 1980 and the emergence of Internet in the 90s. However, it is remarkable that a negative 

trend (the negative side of the cycle) seems to appear from 1995.  

 

Figure 4: Newly established R&D agreements in the software industry. Source: Cloodt et al. (2010) 
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2.2 The determinants of tie formation:  a brief survey of relevant previous 

literature  

 

While the literature on the various forms of R&D cooperative agreements has a long tradition 

(e.g. Contractor and Lorange, 1988), it is only recently that a network perspective has gained 

attention, spurred by the massive contributions of sociologists to the field (Powell et al., 

1996). 

Early studies were most interested on the firm level, trying to identify firms’  and industries’ 

characteristics affecting firms’ propensity to enter into collaborative agreements, their total 

number of agreements and partners, and the impact of firms networking strategies on 

technological and economic performance.  A network perspective, instead, leads to tackle two 

interrelated questions i) the determinants of tie formation among nodes (i.e. firms or other 

organizations); ii) the structural properties of the R&D network. In this section we focus on 

question i), although it is clear that the answer to this question has obvious implication for ii). 

The literature is now sufficiently rich to generate some well consolidated stylized results.  

One way to classify the determinants of tie formation is to distinguish between exogenous and 

endogenous determinants, where exogenous and endogenous refer to the influence of existing 

network architecture.  

As for the exogenous determinants, most studies have focused on technology, trying to assess 

the probability of two firms forming a collaborative link, as a function of their technological 

distance, usually measured through their patent portfolios.  

A quite general result is that firms need to be close in the technological space for being good 

partners (e.g., Stuart, 1998; Vonortas and Okamura, 2009). First of all, technological similar 

firms are more likely to find useful the knowledge possessed by their partners. In addition to 

that, as long as firms use technological alliances in order to learn, they need to have pre-

existing knowledge in the partner’s field of expertise (i.e. the “absorptive capacity”) in order 

to take advantage of its capabilities. Moreover, cognitive proximity is required for effective 

communication to occur. Nevertheless, if firms are technologically too close, opportunities for 

learning may decrease: firms need to be sufficiently dissimilar for technological 

complementarities to be exploited through collaboration (Nooteboom, 1999). Mowery et al. 

(1998) is one paper that, in a sample of 151 international joint ventures, in several sectors, 

find evidence of such an effect.  

 

Endogenous determinants of tie formation are probably those that have attracted more 

attention in recent works. 

First of all, a quite robust result in the literature is that firms tend to ally with previous 

partners (Gulati, 1995; Stuart, 1998; Gulati and Gargiulo, 1999, Vonortas and Okamura, 

2009). Firms, with familiarity, build trust, lower transaction costs and limit the risk of 

opportunistic behaviors. At the same time, they can develop routines and codes which favour 

the effectiveness of communication with the partner and control the flows of knowledge.  

Indirect links among firms appear to be important as well. Common previous partners can 

play several roles (Gulati and Gargiulo, 1999): first, they constitute sources of information 

about potential partners for new collaborations; second, they reduce the asymmetric 

information among the potential partners, providing an indirect reputation effect; finally, 

firms that share many common partners can develop a common language for cooperation, 

practices and routines. From the point of view of network structure, the positive impact of 

indirect links on tie formation tends to create cliques, or more in general cohesive sub-groups 

of firms within the network.  The existence of cohesive sub-groups has been shown in a 

number of paper, including. Nohria and Garcia-Pont (1991), who consider 35 leading firms 
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and 133 alliances in the automobile industry, and Gomes-Casseres (1996), who showed that 

competition in the personal digital assistants market has been characterized, since its 

inception, by alliance groups of firms coming from different sectors.  

Another endogenous mechanism that has been explored is related to “structural holes” 

argument by Ronald Burt (Burt, 1992). According to Burt’s theory, non redundant contacts 

are more likely to give the nodes involved timely access to diverse sources of information, as 

well control over such information, in order to secure them more favourable terms in the 

opportunities they choose to pursue. 

Rosenkpof and Padula (2008) consider the evolution of the network of the mobile 

communication industry in the period 1993-2002. In part of their analysis, the authors study 

the determinants of the formation of “short cuts” across clusters, and found that those are 

more likely to be activated by firms with similar level of centrality.  

Finally, the probability of ties involving nodes that are new to the network has been studied. 

Barabasi and Albert (1999) developed a model in which new nodes enter the network over 

time, and form links towards incumbent nodes with probabilities that are proportional to the 

existing number of links of the incumbent nodes. They show that such “the rich-get-richer” 

dynamics generate a power law distribution of degrees (i.e. most nodes have few links and 

few nodes have many links), which is often observed in real world networks. Studies that find 

evidence for preferential attachment mechanisms and/or scale-free networks are Krebs (2004) 

for the Internet Industry, Riccaboni and Pammolli (2002) for networks in life sciences and 

ICT 

While our knowledge of the determinants of tie formation is relatively well established, much 

less is known about the importance of tie formation determinants over the network life cycle, 

i.e. over the periods of growth and then decline in the number of established agreements; 

which, we claim, is intrinsically associated to the evolution stages of the corresponding 

technologies. To the development of hypotheses on this theme is dedicated the next section.  

 

2.3 Towards hypotheses on tie formation determinants over the network life 

cycle 

 

Nowadays, it is common to look at technological through the lens of concepts such as 

technological trajectories and regimes (Nelson and Wiinter, 1982) technological guideposts 

(Sahal, 1981) or technological paradigm (Dosi, 1982), which are all based on the idea that 

processes of knowledge accumulation go through stages that are different quantitatively (e.g. 

in terms of rate of progress) and qualitatively (e.g. in terms of uncertainty).  

All these concepts share the view that it is possible to distinguish between two phases. In the 

first phase, uncertainty, both at technical and commercial level, is high, different paths of 

research are explored, various methods and principles compete. In this “fluid” phase, 

technological progress is initially low, but then, also thanks to a process of knowledge 

recombination, technological accumulation “takes off”. Technology then enters into a second 

phase of stability, when uncertainty is reduced, common methods and principles of search 

prevails and a dominant design is established. In this second phase, technological progress 

continues to remain significant, until opportunities start to be deployed and the technology 

reaches maturity.  

What are the determinants of tie formation over this evolution? First of all, it must be 

acknowledged that technological alliances and networks are most common when the 

knowledge base required to innovate is complex, hinging upon different technical and 

scientific fields. In the fluid phase, we conjecture that only firms that are highly competent in 

one of the fields required to innovate, and are highly complementary, have the incentive to 
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form a link, thus entering the network. In this phase, the cost of forming ties, i.e. the barriers 

to network entry, is high, since uncertainty is high and the required investments may be large. 

In other words, we will hypothesize that exogenous determinants of tie formation are initially 

prevalent, in addition to the obvious consideration that the influence of the existing network 

structure cannot be too large when the network is almost empty.  

One question that can emerge relates to the identity (i.e., old, established firms versus young 

firms) of the first firms forming ties. Our a-priory is that established firms are the most likely 

to be first entrants into the network. First of all, this is likely to be case when technological 

discontinuity is competence-enhancing. Second, established firms may possess the 

complementary assets that, together with technical expertise, provide value to the 

collaboration, thus increasing their incentives to form and their attractiveness as partners. 

Finally, incumbents may be the large, diversified firms more likely to bear the risk of 

uncertain investments. On the other hand, if the technological discontinuity is competence-

destroying, young, specialized firms may play a role since the beginning, due to their unique 

expertise.  

As the technology evolves into the maturity phase, and also market conditions are most 

established, barriers to entry into the network reduce, mainly due to the reduction in 

uncertainty. More opportunities to form alliances are created, also to the process of 

knowledge recombination: once the basic “architecture” of the technology has been reached, 

firms can start to work and cooperate on specific problems: the network moves from the 

exploration phase to the exploitation phase. In this stage, also young and firms, relatively less 

competent, may find entry into the network profitable. 

As the number of potential partners increases, the endogenous determinants of network 

evolution become more and more important as a partner selection criteria, allowing to reduce 

the uncertainty on potential partner characteristics, create a common language in the cluster, 

favor ex post cooperation. Endogenous mechanisms induce a path-dependent, relatively 

predictable evolution of the network, which favours incumbents, in the sense that firms 

already in the network, ceteris paribus, prefer to link each other. Entry opportunities, 

however, may be guaranteed by the operating of the exogenous mechanisms, since, for 

instance, young firms may play the role of preserving technological variety in the network, 

thus spurring technological progress even in the mature phase. Nevertheless, the path 

dependent mechanisms provide an advantage to early entry in the network in this phase.  

Finally, when technological opportunities are more and more deployed, technologically 

progress slow down, reducing the rate of new ties formation, until the network cycle 

concludes.   

 

3. DATA AND METHODOLOGY 

3.1. Sample and Data 

Our hypotheses developed in Section 2 has been tested using longitudinal data on R&D 

strategic alliance in the telecommunication industry from 1991 to 2001.  

The data on the alliances were collected from the SDC Platinum Database developed by 

Thompson Financial, which includes all, worldwide contractual arrangements in which two or 

more entities have combined resources to form a new, mutually advantageous business 

arrangement to achieve predetermined objectives.  

We select 681 alliances according to three main rules. First, each alliance included at least one 

US participant. In this way, any technology developed during the alliance is more likely to be 

patented at the US patent office, which is our data source for the technological variables. 

Second, to be included in the sample, each alliance had to operate in the telecommunication 

industry, as indicated by its primary SIC of activity (3661, 3663, 4812, 4813). Notice that we 



       Page 8 of 17 

did not impose restrictions on firms’ SIC codes. Third, the objectives of the alliance concern 

technological related objectives. In the dataset, each alliance has been classified by Thompson 

according to its content. We selected only R&D-related agreements namely Exclusive 

Licensing, Cross Licensing, Cross Technology Transfer, Licensing, Technology Transfer, 

Research and Development.  

Figure 5 reports the behaviour of R&D alliances in our sample, together with the data on non 

R&D (“commercial”) alliances in the same SIC codes. 

 

Figure 5: Newly established R&D and non R&D agreements in our sample 

 

 

Figure 5 shows quite clearly the reason why we selected the period 1991-2001 for our 

analysis. From the point of view of R&D tie formation, this decade corresponds to a network 

cycle. In 1990, the number of newly established R&D agreements was 10. After that year, the 

number of new alliances growth significantly each year, reaching the peak of 162 newly 

formed agreements in 1994. From that year on, we observe instead a negative trend. In 2001, 

the number of new agreements was 7, remaining at these low levels also in the following 

years.  

Consistently with our argument in Section 2, this period, and then the network cycle, 

corresponds to an era of great technological ferment in telecommunications. 

Contemporaneous to the processes of market liberalization, which in the US found their 

crucial passage in the 1996 Telecommunications Act, these years saw the full development of 

the Internet era. In 1990 the first incarnation of the World Wide Web was introduced.  In 1993 

we observed with the development of the first user friendly internet interface, i.e. Mosaic, the 

first World Wide Web Browser. In 1994, the first commercial web browser (Netscape 

Navigator) was launched, marking the shift from the academic
1
, technological development to 

the commercial one  (Fransman 2003).  
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In terms of firms,
1
 our sample include 709 firms distributed over 88 different 4-digit SIC-

codes.  The distribution of firms by primary SIC code is represented in Figure 6. The great 

heterogeneity of areas of activity (and technological capabilities) perfectly exemplifies the 

recombinatory process that determined the emergence of the new technological paradigm in 

telecommunications.  

Figure 6: Distribution of firm primary SIC codes in our sample 

 
 

In addition to alliances data, we also collected and used data on firms’ attributes. First of all, 

to measure technological knowledge we used patent data which are a valid and robust 

indicators of knowledge creation (Trajtenberg 1987), especially in environment like the 

telecommunication industry where the propensity to patent is significantly is high  (Cohen et 

al. 2000). Even if primarily patents represent a codifiable portion of a firm technical 

knowledge, yet they correlate with measures of tacit knowledge  (Brouwer and Kleinknecht, 

1999). Data on patents were obtained from Patstat and only derives from the USPTO. Using 

data from a single source increase consistency, reliability and comparability across firms and 

we select the U.S. patent office for a number of reason. The first reason concerns the high 

quality of the service provided, not only in terms of the rigor and procedural fairness used in 

the granting process, but mainly due to the reputation of the USPTO for providing effective 

intellectual property protection  (Pavitt, 1988). Second, firms have strong incentives to obtain 

patent protection in the world’s largest market for high tech products. We chose the 

application date rather than the grant date since the actual timing of the patented inventions is 

closer to the application date than to the (subsequent) grant date. This is so because inventors 

have a strong incentive to apply for a patent as soon as possible following the completion of 

the innovation  (Hall et al., 2001). Because patents are often assigned to subsidiaries, 

coherently with what we did in the sample we aggregated patents at the ultimate parent level. 

 

In the sample 432 (61%) firms have at least one patent in the period considered. Overall, we 

count 342,452 patents in all the 35 IPC classes. Figure 7 reports the share of patents in the 

most represented technological classes, distinguishing between the early period 1986-1993 

and the late period 1994-2001. Over the two periods it is immediate to notice a shift toward 

the new technologies, with computer technologies and digital communication doubling their 

relative weight. At the same time, we observe a tendency of technological specialization of 

the network: the heterogeneity in terms of patents drastically decrease and the distribution 

tends to shrink around few classes. Both facts are consistent with a process towards maturity 

in the technological development.  

 

                                                 
1
 Since in the SDC database subsidiaries are listed separately from parent firms, we aggregated firms at the 

ultimate parent level. 
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Figure 7: Distribution of patents across technological classes 

 
 

  

 

 

Our choice of not limiting the analysis to large, leading firms but also to include small, young 

firms which actively participated in the development of the technology, but might exit from 

the industry soon after their alliance, because of acquisition or other reason, has a drawback in 

terms of availability and reliability of economic and financial data, such as size or R&D 

investments. For that reason, our main effort has concerned the collection of the foundation 

dates for all the firms in the sample, which is the other firm attributes we will use in our 

regressions. Several sources has been used. For the most important corporations the main 

source is the official web site. For the smallest companies two strategies have been employed. 

A preliminary research has been made using dedicated search engines.
2
 Secondly we used the 

information reported in the original article to track back the name of the key CEO, that in 

most cases coincided with the founder. We cross-referenced this last piece of information 

with http://www.linkedin.com/, and often we found in the resume the establishment date of 

the founded company we were looking for. We lack information on the foundation for 103 

firms over 738.  

 

 

3.2 Dependant Variable and Case Control Design  

 
Our empirical research addresses how the determinants of tie formation change over the 

evolution of the network, so we model the probability that a specific couple of firms enter in 

an R&D agreement (as we define it in the previous section) as a function of a set of 

covariates. Since the unit of analysis is the dyad-year, we coded a dichotomous variable for 

any given year which takes value equal to 1 if the two firms sign an agreement 0 otherwise. 

                                                 
2
 In particular, www.bbb.org (Council of Better Business Bureaus), http://investing.businessweek.com, 

http://www.crunchbase.com,http://business.highbeam.com/, http://companydatabase.org, www.allbusiness.com/, 

http://www.manta.com, http://www.referenceforbusiness.com. 
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The problem in this kind of setting is decide how to define the zeros, the potential dyads that 

did not realize. The first step was to define a risk set, i.e. the firms that were likely to 

participate in the network: for every year  we include in the risk set all the firms that in that 

year entered at least one alliance.  The drawback of this strategy when the network has a large 

number of nodes, like in our case, is that considering all the potential dyads (even if year by 

year), generates enormous sparse matrices hence increasing the difficulty of estimation and 

variable construction (since the variable is at the dyadic level). In particular it does not 

correctly account for non-independence across cases, as each firms enter in the analysis many, 

many time. The large number of repeated occurrences of each firm can lead to systematic 

underestimation of the standard errors  for firms attribute that do not change from dyad to 

dyad  (Sorenson and Stuart 2001).  In our samples 685 alliances generates 995 realized dyad 

and over  1.1 million of potential unrealized ones. To deal with this issue, in line with other 

prior research  (Sorenson and Stuart 2001), we adopt a case-control approach: for every 

realized dyad-year we randomly select 2 potential dyad that did not realize from the risk set of 

the same year. A first remark on the sampling strategy: our choice respects King and Zeng 

(2001) suggestion not to collect more than 2-5 times as many 0s as 1s because the marginal 

contribution to the explanatory variables information content for each additional 0 starts to 

drop as the number of 0s passes the number of 1s.  

The use of a matched sample introduces a new problem. Logistic regression can yield biased 

estimates when the proportion of positive outcomes in the sample does not match the 

proportion of alliances in the populations. Because logistic regression is a multiplicative 

model the bias does not simply affect the intercept term. Rather, bias can affect all coefficient 

estimate. In particular, uncorrected logistic regression using a matched sample tends to 

produce underestimates of the factors that predict a positive outcome  (King e Zeng 2001). 

We correct this potential bias using the method proposed by King and Zeng implemented by 

Tomz in the relogit Stata Procedure (Tomz et al.,2003). 

 

3.3 Explanatory Variables 

3.3.1 Network construction and network variables  
2 

To compute the network related variables, we constructed yearly adjacency matrix 

representing the relationship between actors in the network. Since the data lack information 

about the termination of the alliances we assumed a five year moving windows for alliance 

duration hence each adjacency-year comprehend all the dyadic relations that took place in the 

prior 5 years. This choice reflects the findings from prior research that suggests that the 

lifespan for alliances is usually no more than five years (Gulati, 1995). The first year for 

which we have data on alliance (1990) does not enter in the regression and was only used to 

construct the initial network for the 1991 risk set.  The following  structural measures were 

computed: distance between the nodes in the dyad and centrality measures.  

The distance is defined as the shortest path between the two nodes and, clearly, is defined 

only for those pair of firms for which both participants are present in the network the year 

prior to the alliance (i.e. incumbent in the network). To overcome this problem we translated 

the distance in a series of dummy variables that could account for the issue of disconnected 

firms. For incumbents we coded three variables  

- Direct Tie – equal to 1 if the distance equal 1 (meaning that the two firms formed a 

prior direct tie), 0 otherwise 

- Indirect Tie – equal to 1 if the distance equal 2 (indirect tie), 0 otherwise  

- Not Con – equal to 1 if the pair is formed by two incumbent in two different 

disconnected components, 0 otherwise. 

We then create another variable to assess the effect of being a new possible dyad in the 

network, for which the distance is undefined,  rather than an already possible one (composed 

by two incumbents in the network). New Dyad is set to 1 if at least one of the member in the 

dyad is new to the network (i.e. never entered in an alliance), 0 otherwise.  
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To assess if the network is characterized by homophily, i.e. the tendency of firms to ally with 

firms with a similar status in terms of centrality, or social asymmetry  (Ahuja et al. 2009), we 

moved from the dyadic level to the ego-network of the single firm: degree asymmetry is 

coded as the absolute value of the difference between the normalized degree centrality of the 

two firms  

3.3.2 Technological variables  

In our hypotheses technology is an important determinant of tie formation, in particular 

technological proximity between firms. We measured it by using Jaffe’s index. Consider 

firms as located in a multidimensional technology space, captured by a K-dimensional vector 

(fi=[fi,1,....,fi,K] where fi,j represents the fraction of firm i’s in patent class j. To measure the 

technological proximity (pi,j,t) of firm i and j, the Jaffe’s index is defined as the angular or 

uncentered separation of the vectors for firm i (fi) and firm j (fj) at time t. This proximity 

measure has the following properties: it takes value 1 for firms whose positions vectors are 

identical, it is zero for firms whose vectors are orthogonal, and it is bounded between 0 and 1 

for all other pairs. In other words, it is closer to unity the greater the degree of overlap of the 

two firms research interests  (Jaffe, 1986). This distance is correctly defined only when both 

the firms in the dyad have at least one patent. Since only around 60% of our sample has a 

positive number of patent we interact the technological proximity with a dummy variable, 

Patenting Dyad, coded as 1 if both firms patent. 

3.3.3 Age composition of the dyad  

To investigate whether in the two different periods the entry of young firms enhance the 

probability of concluding an agreement we introduced the variable young which is defined as 

the age of the youngest firm in the dyad.  

 

4. RESULTS  
 

Table 1 reports the results. We consider three models, with different explanatory variables. 

For each model, we run two separate regressions, one for the early period of network 

evolution (t≤1993) and one for the late period (t≥1994). 

 

 

INSERT TABLE 1 HERE 

 

 

First, we comment upon the explanatory variables related to the endogenous mechanism of 

network evolution. In line with previous literature, both the variable Direct Tie, measuring 

familiarity between partners, and Indirect Tie, measuring the existence of a common 

acquaintance, have usually a positive and significant effect on the likelihood of tie formation 

(the exceptions being Direct tie in the early period of Model 2 and Model 3 and Indirect tie in 

the early period of Model 1). More interestingly in our view is the comparison between the 

early and the late period. In any model, the effect of Direct Tie is of larger magnitude in the 

later period of network evolution. One way of interpreting this result is that the effect of 

“familiarity” may be characterized by a sort of increasing returns: the more two firms have 

collaborated in the past, the more they trust each other and build those communication codes 

and routines that favor collaboration. For the variable Indirect Tie, instead, the coefficient is 

larger in the first period (except in Model 1, where the two coefficients are rather similar). 

One of the effect that the variable is usually said to capture is the informative advantage in the 

search process for new partners. In that interpretation, one could argue that when the network 

is mature, the informational asymmetries among firms that are incumbent in the network are 

less severe, and then less important is the role of common partners. 
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The variable New Dyad is not significant in the early period of network evolution, but it is 

always significant with a positive coefficient in the second period. In other words, 

consistently with our argument developed in Section 2, new entry in the network is favored 

when the network (and the technology) is mature, and variety is preserved by firms exploring 

new technological trajectories.  

As for the variable Not Con, belonging to different components turns out to have a significant 

negative impact on the probability of tie formation, both in the early and the late period of 

network evolution (although the effect is larger, in absolute value, in the second period, which 

may be explained by the fact that in this period there exists one component, the main 

component, which is very large compared to the others). 

Finally, the variable Degree Asymmetry has a positive effect on tie formation.  

We turn now on technological variables. The fact that the two firms have both positive stock 

of patents has a positive impact in the first period, and a non significant (and negative) effect 

in the second period. Once again, this is line with our appreciative theory: in the mature 

phase, entry in the network is possible even for firms that do not have (yet) accumulated a 

relevant stock of valuable knowledge (partially the result can also be due to the greater 

importance of software firms, they often do not patents). 

The variable TechProximity has always a positive impact on the probability of tie formation, 

and such impact is larger in the second period: when the technology is mature, collaboration 

is more of exploitative nature, and firms tend to collaborate with more similar firms. The 

square terms for this variable are never significant.  

The last variable in the regressions, Young, has a positive and significant coefficient in the 

first period, and negative, but still significant, in the second period. The interpretation of this 

result is consistent with the explanation for the variables New Dyad and Degree Asymmetry, 

and again, with our appreciative theory: while the agreements in the early phase of network 

evolution typically involves established firms, entry into the network for young firms is easier 

in the mature phase.  

5. CONCLUSIONS 

Relying on the existence of cyclical behavior in the process of R&D network evolution, this 

paper has argued that the role of the various determinants of tie formation may be expected to 

vary over time, depending on the stage of technology evolution. Our theoretical hypotheses 

have found confirmation in an empirical analysis on technological agreements in 

telecommunications in the period 1991-2001. Particular attention has been attributed to 

characteristics of new entrant into the network. While firms entering early into the network 

are typically established firms, new firms find easier conditions of network entry in the 

mature phase of network evolution, when they can provide incumbents specific knowledge 

assets. 

The analysis so far can clearly be strengthened. For instance, the simple distinctions in two 

periods of network evolution may be regarded as a bit arbitrary and more formal tests could 

be tried in order to find the “structural break” in the determinants of tie formation. 

Nevertheless, we think we made a contribution, both conceptual and empirical, to the ongoing 

development of a full-fledged theory of network evolution applied to interfirm technological 

level, which is still lacking and would be important both at the managerial and policy level.  
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Tab 1:  Rare event logit models of the likelihood of a pair of firm entering in an R&D alliance 

 Model 1  Model 1 Model 2 Model 2 Model 3  Model 3 

 t≤1993 t≥1994 t≤1993 t≥1994 t≤1993 t≥1994 

Direct tie 1.111* 2.236*** 1.092 1.999*** 1.094 2.069*** 

 (0.646) (0.379) (0.700) (0.397) (0.700) (0.405) 

       

Indirect Tie  1.349 1.408*** 1.597* 1.159*** 1.549* 1.170*** 
 (0.838) (0.266) (0.904) (0.261) (0.921) (0.262) 

       

Not Con -0.748** -1.322*** -0.615* -1.166*** -0.600 -1.177*** 
 (0.363) (0.211) (0.369) (0.215) (0.371) (0.216) 

       

New Dyad -0.207 0.443*** 0.136 0.863*** 0.113 0.876*** 
 (0.309) (0.129) (0.319) (0.137) (0.321) (0.137) 

       

Degree  0.057** 0.357*** 0.040* 0.309*** 0.041* 0.322*** 

Asymmetry (0.023) (0.027) (0.024) (0.029) (0.024) (0.030) 

       

Patenting   0.421** -0.271 0.393* -0.258 

Dyad   (0.208) (0.193) (0.208) (0.193) 

       

Tech    2.257** 3.475*** 2.281** 3.494*** 

Proximity   (1.060) (0.870) (1.061) (0.873) 
(Interaction) 

 
      

(Tech    -1.337 -1.283 -1.340 -1.365 

Proximity)
2 

  (1.160) (0.866) (1.159) (0.871) 
(Interaction) 

 

 

      

Young     0.006** -0.012*** 

     (0.002) (0.003) 

       

_cons -6.750*** -7.553*** -7.466*** -8.160*** -7.542*** -8.022*** 

 (0.300) (0.126) (0.324) (0.143) (0.329) (0.145) 

N 1610 3425 1610 3425 1592 3379 

ll       

df_m 5 5 8 8 9 9 

aic . . . . . . 

bic . . . . . . 
Standard errors in parentheses 

* p<.10, ** p<.05, *** p<.01 

 

 


